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Abstract 
 
This paper describes a texture caching system for a 3D action game; the purpose of the 
texture cache is to manage the texture RAM of a hardware accelerator.  The specific 
implementation we discuss is designed for 3Dfx Voodoo-based accelerators, using the Glide 
API to manipulate the texture RAM.  However, the design is applicable to any API that 
provides linear access to texture memory. 
 
I: Introduction 
 
This paper jumps straight to the point and describes a recently implemented texture manager 
for Voodoo-based accelerators.  We assume that the reader understands the motivation for 
such a system and is familiar with all the concerns the system must address.  Those wishing 
more background on the subject should see “Implementing a Texture Caching System”, 
Game Developer magazine, April 1998.  That article serves as a lengthy introduction to this 
paper; we will refer back to it from time to time. 
 
The Goal 
 
The goal of the caching system is to minimize the quantity of data downloaded to the 
accelerator’s texture RAM.  Furthermore, the downloads should be leveled, that is, occurring 
evenly distributed over time inasmuch as that is possible. 
 
Texture downloading is a relatively expensive operation; so if downloads occur in an unlevel 
fashion, the game’s frame rate will stutter, which is an ugly sight.  A cache will cause 
wasteful downloads if its replacement policy does not fit the game’s texture access patterns, 
and often these downloads will be pathologically clumped.  We’ll see a clear example of this 
in a moment; avoiding pathological cases is a big part of The Goal. 
 
Design Parameters 
 
The caching system detailed here was designed for a game called Wulfram.  Wulfram is a 
multiplayer vehicle combat game that takes place in an outdoor environment.  The game 
typically draws a landscape, a sky (which is a box of polygons around the landscape), entities 
(represented by BSP trees holding static polygon data and also by voxel grids) and billboards 



(semitransparent polygons that directly face the user and are animated, representing 
explosions, smoke, etc.)  Screenshots of Wulfram can be found in the Game Developer 
article. 
 
A Wulfram scene will contain a few hundred to a few thousand polygons, depending on the 
detail level chosen by the user.  Most of these polygons (50%-90%, based on scene content 
and detail level) are landscape.  Textures for the landscape are dynamically generated by the 
3D engine, largely to facilitate detail reduction (if two polygons are combined into one, we 
need a “larger” texture to map onto the new polygon).  Because of this dynamic generation 
and related factors, there are a large number of individual textures in each scene; the ratio of 
unique textures to displayed polygons is about 0.6 : 1.0. 
 
There is no far clipping plane in Wulfram; players can see to “the edge of the world”.  This 
means that many polygons will be displayed at small mipmap levels, so the cache will be 
required to handle small textures in an efficient manner. 
 
All textures used in the game are power-of-two and square, a fact which can greatly simplify 
the design of a cache (though, as it happens, neither power-of-twoness nor squareness were 
required by the system we ended up building.) 
 
Most textures used in the game are 128x128 texels and 8 bits in depth; a few textures are 
256x256 and a few are 64x64.  For each texture, all mipmap levels down to 1x1 are 
computed using Floyd-Steinberg dithering and stored together with the highest resolution 
(the “source data”).  (Figure 1). 
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Figure 1: Arrangement of a single texture in RAM.  Successive mipmap levels are stored contiguously.

 
Legacy System 
 
When we first wrote the Glide code for Wulfram we were mainly interested in getting it 
working, without much regard for performance.  On 3Dfx’s developer web site was a simple 
code example that provided a primitive form of texture caching, so we wrote our own version 
of their algorithm and used that. 
 



The algorithm was simple: treat texture memory as a wrap-around buffer.  When you need to 
put a new texture into the cache, upload it at the current position in the buffer.  Then advance 
the current position to the end of the texture.  If the texture you’re about to upload is going to 
overwrite any textures currently in the cache, throw them out.  (Figure 2). 
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Figure 2: A simple texture caching method.  In (a), cache memory is mostly empty.  The “old cursor” points to the beginning of the
free space.  When we need to store a new texture, we store it at the old cursor, and update the cursor position.  In (b), cache memory is
full of textures.  We store the incoming texture in the same way as (a), but we first kick out two textures to make enough free space.
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This caching scheme is great because it is easy to understand and easy to implement, and it 
places no restrictions on textures size or geometry.  At first glance it doesn’t look like an 
excellent performer – clearly you would occasionally discard textures you were still using – 
but it’s not too bad, right? 
 
Let us examine the behavior of this cache algorithm in a typical game situation and bask in 
the wonder of its suckiness. 
 
First we must ask: “What is a typical game situation anyway?”  We consider a simple case, 
when the scene is mostly still.  If the 3D engine draws a given object in the same position 
each frame, then unless it’s a very weird engine, it will output the same polygons in the same 
order every time.  If you think about this for a while, you may conclude the following: 
though it’s certainly not true that successive frames of a 3D game contain the same polygons 
output in the same order, chances are quite high that, if we output some sequence of polygons 
in one frame, they’ll appear in the next frame too, in roughly the same order.  This is a 
specific instance of a very old idea in computer graphics, usually called “frame coherence” 
[FV90]. 
 
Because of frame coherence, if we output textures in the order { a, b, c, d, e } in one frame, 
we’ll probably do it again in the next frame.  Now let’s look at the cache algorithm described 
above and see what happens when we output a texture z, causing a to be overwritten, right 
before we begin the a-e sequence in the next frame; in other words, now we’re outputting { z, 
a, b, c, d, e } (Figure 3.) 
 



Every new texture download will clobber the texture we’re about to use for the next polygon.  
The result is that we end up downloading all of { a, b, c, d, e } even though we just had them 
all in cache and could clearly have made a much better choice. 
 
Having shipped this algorithm to actual users (in a beta!), we can state with full force of 
experience that the above case is not just a pessimistic hypothetical situation; it happens all 
the time during routine operation.  On a 2MB Diamond Monster 3D card using 8-bit textures, 
we would occasionally see spikes of 800kb-1200kb of texture downloads per frame, lasting 
for several frames; and if any motion was occurring at all, downloads of 200k-400k per 
frame were common.  (This is already with plenty of code in place to ensure that we upload 
textures only at mipmap levels that are in use.) 

Figure 3: We output the sequence { z, a, b, c, d, e } at a very unfortunate time.  In part (a), the output of z kicks a out of the cache.
In (b), the subsequent output of a kicks b out of the cache.  The pattern continues in (c).
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None of this, of course, is a slight to 3Dfx.  They never claimed that their code sample 
presented a good cache algorithm; mainly they provided it as an example of how to use the 
Glide texture downloading routines.  They clearly expected developers to implement their 
own systems. 
 
But there is one thing about this cache algorithm that we had damn well better notice before 
we go off and try to make something superior.  Say we have a total of 26 textures in our 
game, a-z, which we output in sequential order each frame, and texture RAM is only big 
enough to fit 25 of them.  Just like in figure 3, when the time comes to output z it will 
overwrite a, and then we will overwrite b with a, causing that same chain reaction.  But 
because each frame consists of outputting a-z, then when it comes time to output z, texture a 
is the least recently used texture.  [Silb91].  So if we built a cache that used the ever-popular 
LRU replacement policy, it would behave in exactly this way: our performance would suck 
to high hell. 
 
This is a crucial example of “a little knowledge is a dangerous thing”:  most people who have 
read some stuff about caching “know” that LRU is a catch-all replacement policy that 
delivers good performance in most cases.  But any good cache book will also provide 



examples of how LRU (or any other deterministic algorithm) can generate pathological 
cases. 
 
This section is growing long so we will baldly assert the next fact and leave the reader to 
think about it:  LRU is a good replacement policy when we’re considering textures that have 
been unused for more than one frame.  But once we begin outputting more textures than can 
be held in RAM at once, LRU is an awful scheme, close to the worst we can formulate. 
 
So with all that in our jumbled little heads, we set out to build a system for Wulfram. 
 
Archetype System 
 
The architecture of the texture caching system created by Outrage Entertainment for Descent 
3 seemed like a good fit for Wulfram.  They had designed their cache for square, power-of-
two textures, in a way that could handle small textures efficiently.  So we decided to start by 
building our own version of Outrage’s cache system and seeing how it worked.  Their system 
is described in the Game Developer article but we present a quick recap here: 
 
Texture RAM is divided into a number of separate spaces, which we will call “arenas” here.  
Each arena will hold textures of one mipmap level; so there will be one arena for 128x128 
textures, one for 64x64 textures, and so on.  The arenas are sorted in texture RAM, with the 
lowest-resolution arena “on the left” (occupying the lowest range of memory addresses) and 
the highest-resolution arena on the right.  (Figure 4a.) 
 
Because each arena stores only textures of the same size, an arena can be subdivided into 
“blocks” each of which holds exactly one texture.  Because each block is the same size as the 
others in its arena, it is impossible to have memory fragmentation within an arena.  This 
design decision is very attractive because it eliminates a lot of messy heap management 
issues. 
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Figure 4: Descent 3’s memory management scheme.  a: Memory is
partitioned into contiguous regions based on texture size.  b: The 16x16
region has grown by taking space from the 32x32 region.

 
The walls between arenas are allowed to slide to the left and right to accommodate changing 
texture usage patterns.  For example, suppose that the 32x32 arena is full.  The arena can 
grow by stealing memory from the 16x16 arena to its left or from the 64x64 arena to its right.  
When stealing from the left, an arena must take enough memory for four of its neighbor’s 
textures to hold one of its own.  When stealing from the right, an arena may take only one of 
its neighbor’s blocks, yielding enough RAM for four of its own.  (Figure 4b.)  The choice of 



when to grow an arena, and in which direction to grow it, was made by a set of heuristics the 
details of which we did not know. 
 
 
 
II. Our Cache Implementation 
 
First Attempt 
 
We set out to build a system similar to the cache made by Outrage, filling in the necessary 
details (such as arena growth heuristics).  After about an hour of implementation, though, we 
stopped to reconsider. 
 
We had planned to use the Glide facility of “texture multibase addressing” to implement the 
cache.  Multibase addressing simply means that different mipmap levels of the same texture 
do not need to be stored contiguously in memory; they can be anywhere in texture RAM so 
long as their locations are registered.  Multibase addressing is not the default mode of 
operation for Glide, but it can be enabled with grTexMultibase().  Because we knew that 
multibase addressing existed (though we had never used it) we figured there would not be a 
problem. 
 
Of course there was a problem!  Glide only permits specification of separate base addresses 
for the top 3 detail levels (256, 128, and 64 texels).  All the rest (32 on down) must be 
lumped together into contiguous memory.  This would destroy the neat organization of 
Outrage’s memory scheme, which wanted each arena’s block size to be four times as large as 
the block size below it.  Also it would create many special cases in the texture caching code, 
which would probably take a while to debug and which would make further experimentation 
more complex and difficult. 
 
A simple way around this problem would be to treat each mipmap level as a logically 
separate texture when using Glide.  So, for example, instead of declaring a texture that has 
mipmap levels at 64x64 and 32x32 texels, we would declare two textures, one of size 32x32 
and one of size 64x64, each of which would have only one mipmap level.  Multibase 
addressing would not be required since each texture would be atomic. 
 
This approach has serious drawbacks: it effectively disables some of the chipset’s graphics 
features, such as per-pixel mipmapping and trilinear filtering.  Both of these features require 
the hardware to access different mipmap levels of the same texture; obviously, if we tell it 
that there are no different mipmap levels for each texture, it cannot perform these features. 
 
We didn’t care too much about trilinear filtering, but we really wanted per-pixel 
mipmapping.  So we retreated and redesigned. 
 
Current Version 
 



One nicety of Outrage’s system was that, besides the fact that there could be no 
fragmentation within an arena, there could also be no fragmentation between arenas.  This is 
because every block’s size was four times the size below it; memory could be moved around 
in a way that guaranteed a perfect fit.  This kind of “divide-by-four” cleanliness is the sort of 
thing we programmers find aesthetically pleasing and hard to let go. 
 
After a quick bit of analysis, however, we decided that this design feature was an 
unnecessary frill of Outrage’s system.  If we allow block sizes to be arbitrary (though still of 
a constant size within each arena), then when an arena becomes overcrowded, we can just 
steal memory from the left or right until we have enough; afterward we will leave an area of 
temporarily “wasted” space between the two arenas, whose size is guaranteed to be less than 
the block size of the leftmost arena involved in the memory swap.  This fragment space will 
be taken up again next time the arena barriers move.  (Figure 5.) 

block size b

Figure 5: Between two arenas, one with block size b and one with block size c, there will
be a gap.  The gap must be smaller than b, otherwise it would be taken up by the arena on
the left.  It must also be smaller than c, otherwise it would be taken up by the arena on the
right.  Therefore the gap is smaller than Min(b, c).

block size c

gap

 
In a system with 9 arenas, one for each mipmap level, where the size of a block of mipmap 
level n is (2n)2 (rounded up to the nearest 8 bytes because Voodoo hardware seems to enjoy 
addresses that are 8-byte aligned), then the total amount of “wasted” space at any given time 
must be less than or equal to: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

bytes 21845
1416642561024409616384

022222222 2021222324252627

=
+++++++=

++++++++

 
The smallest amount of texture RAM a Voodoo card supports is 2 megabytes; so the worst 
fragmentation possible is (21845 / (2 * 1024 * 1024)) ≈ 1%, a perfectly acceptable quantity 
as an upper bound. 
 
So we elected to use block sizes that were not multiples of each other.  Specifically, we 
stored textures in the Glide TEXFMT_P_8 format; when we downloaded a texture to the 
card, we would ensure that all mip levels from 0 to n were present (where n is the number of 
the arena we are downloading into).  The size of each block is then given by the SizePlus 
function described in the Game Developer article (which is the same as the equation given in 
Figure 1), with the exception that all block sizes are rounded up to the next multiple of 8; a 
table of block size by mip level is given in Figure 6. 



 
Using these block sizes, our max fragmentation will be (21848 + 5464 + 1368 + 344 + 88 + 
24 + 8 + 8) – (8 * 8) = 29088 bytes, for a slightly higher max fragmentation than in the 
earlier case (almost 1.4%). 
 
 
 

max mip level   texture size (bytes)   block size (bytes) 
         0                     1                    8 
         1                     5                    8 
         2                   21                  24 
         3                   85                  88 
         4                 341                344 
         5               1365              1368 
         6               5461              5464 
         7             21845            21848 
         8             87381            87384 
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Figure 6: The block sizes used in the Wulfram cache.  Each block size (third column) is the
texture size (second column) rounded up to the next 8-byte boundary. 
euristics 

ith, we implemented a version of the cache which did not allow the arenas to resize 
s.  By using a graphical texture download monitor we could see that already this 
rformed better than 3Dfx’s sample code, except when an arena became full, in 
e textures that were being used would always be kicked out of the cache, causing a 
cle.  We toyed briefly with different partitionings of texture memory but no set of 
s seemed to avoid the problem.  So, as we knew would be necessary, we set out to 
arenas grow and shrink in a reasonable way. 

up with our heuristic, we used an analogy that is common in computer science: 
re.  An arena that is “hot” wants to expand; an arena that is “cold” wants to 
An arena that is too hot – one in which textures are constantly being thrown out 
ly – is “boiling”. 

emperature” of a region, we measured the percentage of that arena that was 
by active textures, represented as a floating-point number between 0 and 1.  In the 
 “boiling” occurs, we add an artificial bonus to the temperature each time a texture 

ully ejected from the cache.  Therefore, the more a region is boiling, the higher its 
re will be above 1.  (Figure 7.)  This is an abuse of the term “boiling”, but hey. 
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Figure 7: Arenas at different temperatures.  The white cells represent unallocated blocks; the shaded cells represent
occupied blocks.  Arena (a) is coldest at 30% occupation; (b) is warmer at 70%.  Arena (c) is “boiling”; the darkly shaded
cells represent blocks where active textures had to be discarded to make room for new textures.  This is bad and the
badness is reflected in (c)’s very high temperature.

a.

b.

 
Because we wanted the cache system to remain stable over time, not to be perturbed too 
greatly by instantaneous oddities in texture usage statistics, we decided to use the above 
method to compute the instantaneous temperature of each arena; but that instantaneous 
temperature would not be used directly.  Instead, we introduced the idea of recent 
temperature, which is a time-averaging of instantaneous temperatures.  Specifically, 
 
       recent0 = 0 
         recentn = recentn-1 * 0.7 + instantaneousn * 0.3 
 
This way, temperature does not change too discontinuously, so the cache does not “thrash” 
when usage statistics change dramatically from frame to frame. 
 
Once per frame, during the “cache update”, we modify the sizes of the arenas.  Each arena 
looks at the average temperature of everyone in the cache to its left; if that temperature is 
substantially lower than the arena’s recent temperature, the arena expands to the left.  The 
arena then does the same thing to the right. 
 
Because the arenas consider temperatures that are averaged over the entire memory aperture 
instead of just their neighbors, the cache system will discard active textures in the short term 
in order to achieve longer-term stability.  See Figure 8. 
 

Figure 8: The arena on the right will expand to the left because the average temperature to its left is 0.3.  In expanding it will
take memory from an arena hotter than itself.
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It is worth noting that this simple scheme is capable of preemptively sensing and responding 
to imbalances of memory allocation.  For example, if an arena is very hot, it will begin 
expanding even though it has not yet filled; so, in most cases, emergencies are averted before 
they occur. 
 
Placement and Replacement Policies 
 
When choosing an empty block to store a new texture, it would be a bad idea to use a block 
that is about to be yielded to a hotter arena; the texture would just be knocked out of the 
cache and would need to be downloaded again, decreasing the cache’s efficiency.  To avoid 
this, each arena remembers the temperature measurements it took during the last cache 
update and prefers to allocate blocks that are closer to the cooler side of the cache.  (Blocks 
which are on the absolute left and right of the memory aperture, having only one neighbor, 
always prefer to allocate on the side without a neighbor.)  See Figure 9. 
 

Figure 9: The arena on the left is at the left end of texture RAM, so it will prefer to allocate textures on its left side.  The
arena next to it (temperature 0.76) prefers to allocate from the right because texture memory is cooler on that side.

temperature 0.8 temperature 0.76 temperature 0.70

allocation allocation allocation

 
When we need to throw out a texture that is in use (i.e. an arena is boiling), we simply choose 
a random block within the arena and discard its texture.  The “random” replacement policy 
performs nicely in this case, avoiding the problems caused by LRU. 
 
III: Conclusions and Future Work 
 
Overall Performance 
 
For the current version of Wulfram the cache performs excellently.  It is extremely efficient 
at allocating texture RAM and exhibits level performance statistics.  We can change scene 
types abruptly (from, say, 300 polygons with high-resolution textures to 9000 polygons with 
small textures) and the cache will quickly adapt. 
 
Because blocks within an arena are all the same size, allocation and deallocation of textures 
is a nearly instantaneous process. 
 
Potential Performance Issues 
 
One reason that this scheme works well for Wulfram is that we have only 9 possible texture 
sizes, so the overhead involved in maintaining the arena spaces is minimal.  In a system that 



required a much larger number of texture sizes, the usefulness of this type of cache would 
break down.  In the extreme case, we can imagine a cache with hundreds of arenas, each of 
which contains only a few textures.  Since there are now many arenas, there will now be an 
unacceptable amount of wasted space between the arenas.  But even worse, in this case we 
must regard some unoccupied blocks within the arenas as fragmentation (since the mean time 
to block usage for any given block size will be very high), and suddenly our cache design is a 
very poor performer.  For an engine that requires the use of arbitrary texture geometries (such 
as the KAGE engine outlined in the Game Developer article), this type of cache is wholly 
inappropriate, and indeed it is difficult to imagine how to apply the idea at all. 
 
Furthermore, with any number of block sizes, it is possible for two arenas to “fight” each 
other, where one arena expands into another arena, which then expands back into the first 

arena.  This problem is not fatal because, provably, the cache algorithm reaches equilibrium 
in the steady state.  Also, we have not seen this phenomenon occur in noticeable amounts 
during gameplay.  However, it is probably responsible for a few extra texture discards 
whenever an arena boils (Figure 10). 

Figure 10: Looking back at the situation from Figure 8: If, during the course of our arena maintenance, we expand the “hot”
arena (b) into the warm arena, which itself wants to expand, we may discard a texture in the warm arena that we  shouldn’t
have.  This kind of case is rare (the allocation preferences help avoid it).  It can be handled with careful programming.
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Also, there are some clear cases when this algorithm is less efficient than the blind heap 
management given to us by higher-level APIs.  Imagine that we start with an empty cache; 
then we output into Arena 5, say, twice as many textures as will fit there (though they would 
still fit into all of texture RAM taken as a unit).  Even the much-maligned algorithm at the 
beginning of this paper will handle this case with no problem, but our algorithm will end up 
kicking some textures out of the cache while it adjusts.  This is a bummer, but we console 
ourselves with the fact that this is a bizarre scenario unrepresentative of typical conditions. 
 
Is this algorithm applicable to future hardware? 
 
Earlier we have said that this algorithm requires linear addressing of texture memory, but that 
isn’t strictly true.  The algorithm uses block uploads to put textures into memory, and this is 
the abstraction used by most hardware with nonlinear addressing. 
 



Within a texture block, byte order could be random for all we care.  And since block sizes are 
arbitrary, we can choose a block size that works for particular hardware if such a size exists.  
(For example, given hardware where memory proceeds in 64-byte chunks, the interiors of 
which are arbitrarily ordered or unaddressible, we need merely ensure that our block sizes are 
all multiples of 64 bytes.) 
 
Certainly  we can concoct hardware for which this algorithm is inappropriate.  Generally, 
though, it can be made to work, provided that the API gives us some form of addressing. 
 
Is all this even a good idea? 
 
We’ve got games to write here, and games are getting bigger and more complicated all the 
time.  Is it justifiable to spend time and effort working on a custom texture cache, when 
driver writers can theoretically spend more effort and do a better job? 
 
For now this may be a moot question.  Developers using OpenGL (or inferior APIs such as 
Direct3D) do not have the ability to directly manage texture memory, so they cannot 
implement algorithms such as the one described here.   Instead they must tell the API which 
textures to allocate and deallocate without knowledge of the effect such operations will have 
on the fragmentation of the heap.  Of course, it is the driver writer’s job to make sure that the 
driver is very smart about keeping heap fragmentation minimal; but this is a very hard 
problem (creating a good memory management system that works for anyone who might 
wish to use the driver) whereas the author of a game is confronted with a much easier 
problem (creating a good memory management system that works for one game’s access 
patterns). 
 
In any case, at this time it is clear that some developers prefer coding to a native API for a 
few major (market-dominating) cards, using a higher-level API such as OpenGL to cover the 
rest.  In the case when coding to a native API, a good cache is probably not available, so 
making one is probably a good idea. 
 
And 
 
As it stands, the source code for our implementation uses some idioms of our own 3D engine, 
so it is not quite useful to the general public.  However, if there is enough interest (expressed 
via e-mail), I will spend the effort required to abstract the code and release it to the public.  
The basic idea of this kind of cache could certainly be taken much further, and it would be 
interesting to see people experimenting with it. 
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