
For example, textures can be pulled from disk into system
RAM or downloaded from system RAM into the video RAM
of a 3D accelerator. Textures can be dynamically generated
by combining illumination maps with unlit source textures.

QUAKE was one of the first games to implement a texture
caching system that interacts closely with the 3D pipeline to
cache graphics in an efficient manner (see References). DOOM

cached textures as well, but its system was more of a solid-
state approach, as was the data caching scheme in the 2D
side-scroller ABUSE. The source code to both ABUSE and DOOM

is now available; see the References at the end of this article.
This article is broken into two parts. First, we’ll discuss the

nature of texture maps and the issues involved in imple-
menting a texture cache. Then, we’ll look at some concrete
implementations of caching systems used in games that are
currently under development.

Textures and MIP-mapping

T exture storage is all about MIP-maps. MIP-maps are pre-
filtered versions of a texture map stored at varying reso-

lutions. To simplify this discussion, we will focus on MIP-
maps that are square and are a power-of-two in width (1×1,
2×2, 4×4,). We will speak of a MIP-map level (or MIP-level)
as a nonnegative integer that describes the resolution of a
MIP-map: a texture at MIP-map level n is 2n texels square.
MIP-level 0 is the smallest size at 1×1 texels, increasing with
conceptually no upper bound (though we might voluntarily
choose one to ease implementation) (Figure 1).

G A M E D E V E L O P E R A P R I L 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

46

C A C H I N GT E X T U R E

Implementing
a Texture
Caching
System

exture caching systems are

designed to overcome the texture

budget limitations of 3D games. Only the

textures required to display the current

scene are held in RAM. When new tex-

tures need to appear in the scene, they are

loaded from a larger and slower repository,

or they are dynamically generated.

TT
b y J o n a t h a n B l o w

Jonathan Blow is vice president of software development at
Bolt Action Software, a San Francisco-based game developer.
He can be reached at jon@bolt-action.com

WULFRAM, the multiplayer tank from
Bolt Action Software.

The reader should note that this MIP-level numbering
convention is different from the most commonly used nota-
tion, in which MIP-level 0 is the texture at its maximum res-
olution, perhaps 128×128, level 1 is reduced by one step
(that is, 64×64), and so on. That convention doesn’t make
any sense when you’re deep into texture caching: what is
the maximum resolution of a dynamically generated plasma
fractal?

Let’s take a look at the memory required to store textures.
Every (uncompressed) MIP-map level of a texture requires
four times as much RAM as the level below it. A texture at
level n uses

texels worth of RAM. Storing all MIP-map levels from 0 to n
requires

Now suppose we have a texture at maximum detail and
we want to store all MIP-maps down to level 0. How much
extra memory does this require? In other words, how big is
SizePlus(n) relative to Size(n)? We can figure this out using
some standard power series diddling.

Since the amount of memory required to store a texture
grows with 2n as you climb the MIP-map ladder, you need to
be careful about holding resolutions that are only as large as
you really need. Conversely, because the required memory
shrinks as you decrease MIP-map level, storing all the detail
levels that are smaller than the level that you really need
requires only one-third more memory.

Decisions Must Be Made

To build a system that’s good at texture management, you
want to keep only the necessary textures in RAM at only

the necessary detail levels. The set of necessary textures will
change from frame to frame based on what the 3D pipeline
decides to do. To be effective, our caching system must pre-

dict and accommodate the needs of the pipeline. A good
cache will be specifically designed for a particular application.
(Does the cache need to handle dynamic or static textures or
both? How many textures and at what sizes?) See Figure 2.

Our system will have to perform the following tasks. There
are a variety of ways to approach each problem, each with
its own advantages and drawbacks.
GENERATE TEXTURE REQUESTS. In order to fetch textures into
RAM, the main 3D pipeline must tell the cache which tex-
tures it needs. Typically, this communication takes place in
one of two ways. When the pipeline decides to emit a poly-
gon using a particular texture, it calls a procedure to request
that texture from the cache; this is known as pipeline hook-
ing. Zoning, on the other hand, divides the world into
zones; the pipeline predicts which textures it will need based
on the position of the viewpoint, then requests those tex-
tures from the cache in batches.

Zoning generally requires preprocessing to determine visi-
bility between spatial regions; however, it can be less expen-
sive than pipeline hooking during run time because it does
not require per-polygon tests. Pipeline hooking will generally
require vigorous prefetching, but it is more versatile in that it
places fewer restrictions on the application as a whole.

The concept of zoning applies itself more naturally to
occluded indoor environments (such as QUAKE’s) than to
outdoor scenes (such as TERRA NOVA’s).
DETERMINE THE DETAIL LEVEL. To operate efficiently, the cache
should only retrieve detail levels that are required to draw
the scene. We can achieve a precise solution by computing
the texture gradients for each polygon that we emit and
using those gradients, along with the nearest and furthest

s SizePlus n Size i

s

s

s s

s

s

i

n
i

i

n

i

i

n
i

i

n

j

j

n
j

j

n
n

n

n

n

= −() = () =

= =

= = + −

= + −

= −

= −

=

−

=

−

=

−
+()

=

−

= =

−

∑ ∑

∑ ∑

∑ ∑

1 2

2 2 2 2

2 2 2 2 1

2 2 1

3 2 1

2 1

0

1
2

0

1

2 2 2

0

1
2 1

0

1

2 2

1

2

0

1
2

2 2

2

2(()
−() = () −()

3

1 1 3SizePlus n Size n

SizePlus n Size i
i

n

() = ()
=
∑

0

Size n n n() = () =2 2
2 2

h t t p : / / w w w . g d m a g . c o m A P R I L 1 9 9 8 G A M E D E V E L O P E R

47

Level 0: 1 x 1

Level 1: 2 x 2

Level 2: 4 x 4

F I G U R E 1 . MIP-maps of a texture at levels 0-2.

vertices of the polygon, to tell us which
MIP-map levels are needed.
Alternatively, finding a conservative
estimation involves cheaper computa-
tions than those required for the pre-
cise solution scheme. We can use a
polygon’s nearest vertex and a per-
polygon precomputed coefficient to
find a conservative upper bound on the
necessary MIP-level. Or we can simply
dodge the problem by always fetching
textures at full resolution. We use the
caching mechanism only to decide
which textures are necessary.

Superficially, the conservative estima-
tion scheme seems more attractive than
attempting to find a precise solution
because of our tendency to play bean
counter with CPU cycles spent per poly-
gon. However, since the conservative
estimation scheme will generally
request higher MIP-levels than the pre-
cise solution scheme, it places more
load upon the cache. When comparing
these methods in the WULFRAM engine,
we found that on average the conserva-
tive estimation scheme would request
textures one or two MIP-levels higher
than would the precise solution scheme.
This meant that the texture cache was
fetching and synthesizing textures that
were about eight times as large as they
needed to be, slowing texture construc-

tion to an unacceptable rate. The frame
rate also became very jumpy because
texture-building costs are less evenly
distributed than per-polygon costs.

However, the effect of the MIP-map
level decision is application-depen-
dant, and the conservative estimation
scheme could be better than the pre-
cise solution scheme in some cases,
especially if polygon counts are very
high compared to the frequency of
cache misses.
FILL THE CACHE. When the pipeline needs
a texture, the cache makes it available.
A synchronous fetching scheme
momentarily pauses execution of the
main program while the texture is
being placed in the cache.
Asynchronous fetching, on the other
hand, allows execution of the main
program to proceed in parallel with the
cache filling process.

If textures are being dynamically
generated into the cache in a CPU-
bound manner, asynchronous fetching
will only result in performance
improvements on a multiprocessor
machine. When a cache fill involves
reading from external storage such as a
bus-mastering hard drive controller,
however, an asynchronous fetch won’t
actively consume CPU cycles.
EMPTY THE CACHE. The cache is of finite

size. When it fills up, we must discard
textures that are no longer needed. The
games surveyed in the latter half of this
article use a few different methods for
emptying the cache. One common
term we’ll use is LRU, meaning Least
Recently Used. In an LRU scheme,
cache elements are marked with time-
stamps indicating the last time they
were used. The element with the oldest
timestamp is discarded.
MANAGE MEMORY. The texture caching
system must find available memory for
new textures efficiently. Also, if pre-
cious cache space is to be effectively
utilized, fragmentation must be kept to
a minimum. For a memory manage-
ment scheme to be effective, it must be
designed around permitted texture
dimensions and the application’s typi-
cal usage statistics. Developers are
using a huge number of approaches to
memory management; I’ve outlined
several in the survey.

Potential Enhancements to Base
Functionality

O nce a caching system is in place,
many things can be done to

improve performance. Here are a few
possibilities:

G A M E D E V E L O P E R A P R I L 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

48

T E X T U R E C A C H I N G

F I G U R E 2 . MIP-map level distribution for a typical scene from WULFRAM.

A

B

14,712 polygons

1,238 polygons

On the left is the actual rendered image; on the right is a gray-coded version, with MIP-maps at level 0 drawn in dark gray, ranging up
to level 7 drawn in white. Version A of the scene has detail reduction turned off; version B has it turned on. Note that A generally con-
tains textures that are much smaller than B (the image on the right is darker). The point of this example is to highlight the interaction
between cache design and pipeline design. The detail reduction system in WULFRAM strongly affects its texture usage statistics,
changing the job that the cache must perform. A scheme that is memory-efficient, but behaves poorly with many small textures,
would not suit applications with scenes resembling A, but would be fine for B.

PREFETCHING. Fetching a texture invari-
ably incurs a computational cost;
requests for new textures will often
occur in bursts, resulting in uneven
demand on the CPU. To maintain the
frame-rate level, fetch some textures
before they’re actually needed (during
a lull in the handling of cache misses),
thereby spreading each burst across
more frames.

If texture fetching occurs asynchro-
nously, it’s possible that a texture
won’t have arrived in the cache by the
time we need to draw it. In this case,
we typically draw some sort of stand-in
for that texture, which results in a loss

of image quality. Prefetching textures,
however, minimizes the possibility
that our cache will be missing textures.

An easy way to prefetch textures is to
bias MIP-level computations (recall the
precise solution and conservative esti-
mation schemes) so that larger MIP-
maps are requested slightly early. In
the very common case where the view-
point is moving forward, this has the
effect of automatically prefetching
higher-resolution MIP-maps of visible
textures.
COMPRESSION. If the cache system
manipulates compressed textures,
throughput requirements (and CPU

requirements due to copying) will be
reduced, and a cache of a given size
will be able to hold more textures.
However, this idea has many draw-
backs. A software rendering system typ-
ically needs to manipulate uncom-
pressed textures. Hardware accelerators
use many different types of compres-
sion, so textures will often need to be
uncompressed before they are sent to
hardware (especially when using an
abstracted 3D API such as OpenGL).
The cost of decompressing your tex-
tures will usually outweigh the com-
pression’s initial benefits.
ADVANCED HIDDEN SURFACE ELIMINATION.
Rendering scenes of high depth com-
plexity using the painter’s algorithm
or a depth buffer places an unneces-
sary load on the texture cache; we will
often load the cache with textures
that are actually invisible because
they’re on polygons that are occluded
by other polygons. A reasonable form
of occlusion culling could reduce
cache load tremendously for certain
types of scenes.

Performance Patterns

W e would do well to note some
basic truths about texture-

caching systems. If the viewpoint and
all objects in the scene are stationary,
cache misses will be at a minimum
because the scene will be the same
from frame to frame. In this case, we
only need to fetch new textures for ani-
mated polygons or when the cache is
too small and we are forced to discard
live textures. If we consider both these
circumstances to be rare, then the
cache is basically unstressed with a sta-
tionary viewpoint.

When the viewpoint moves linearly,
small wedges of the frustum will come
into view, and some textures that were
already visible will shift to a higher
MIP-map level (Figure 4a). This shift
causes texture fetches, putting some
load on the cache. The more quickly
the viewpoint moves, the heavier the
load on the cache, because more of
those events are happening each frame.
Backward motion places especially high
stress on the cache because it intro-
duces new textures at their highest
detail levels (textures coming into view
from the sides will generally be needed
at intermediate detail levels).

G A M E D E V E L O P E R A P R I L 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

50

T E X T U R E C A C H I N G

Many upcoming games use
“illumination maps” (or
“lightmaps,” the term
used in the rest of this arti-

cle). Lightmaps are a good example of
dynamic texture generation: a source tex-
ture will often be combined with a lower-
resolution lightmap to produce a shaded
texture, which is then used on polygons in
the scene. The shaded texture remains in
the cache as long as it is being displayed.
When a polygon’s lighting changes, its
texture is invalidated and recomputed

using a new lightmap. The generation of
the shaded texture can consume an
appreciable number of CPU cycles, since
effects such as bilinear filtering are often
used to compensate for the lightmap’s
lower resolution (Figure 3).

In the survey of game engines in the
latter half of this article, we’ll speak of
“lumel ratio.” A lumel is one pixel of a
lightmap, and the lumel ratio is a lumel’s
width divided by the width of a texel from
the texture map to which the lightmap is
being applied.

Generating Lightmaps

Bilinear filter

Lightmap x Source texture Generated texture

X

0 .5

.5 1

0 1 1 0

1 .5 .5 1

1 .5 .5 1

0 1 1 0

0 0

0 0

0 .17 .34 .5

.17 .34 .5 .67

.34 .5 .84

.5 .67 .84 1

.67

.17 .34

.17 .17 .25 .67

.34 .25 .34 .84

.67 .84

F I G U R E 3 . A lightmap at level 1 is bilinear filtered up to level 2 so that it can be
combined with a source texture at level 2 to generate the resultant texture. The
lumel ratio in this example is 2:1.

Rotating the viewpoint stresses the
cache even more. At each frame, a
wedge comes into view that widens
with distance from the viewpoint
(Figure 4b). Generally, the new vol-
ume of space revealed by a rotation
will be much larger than the volume
revealed through linear movement,
resulting in a corresponding increase
in cache events.

Long-distance “teleportation” of the
viewpoint is the nastiest type of move-
ment in terms of stressing the cache —
the newly revealed area could poten-
tially consist of the entire frustum
(Figure 4c.)

Quality Loss

If cache filling occurs asynchronous-
ly and a texture isn’t ready when we

need it, we’ll typically use a stand-in
for the texture, such as a lower-resolu-
tion MIP-map. In this case, we suffer a
loss in image quality. We can catego-
rize potential magnitudes of quality
loss in the same way that we just cate-
gorized cache stress: according to view-
point movement.

A stationary scene should incur no
quality loss in the steady state, again
provided that no exceptional circum-
stances exist. Most linear motion in
games is forward, and forward motion
causes the fewest problems — when
we’re nearing a texture and it switches
MIP-map levels from n to n+1, it does
so at the point where there is almost
no visual difference between level n
and level n+1. This is the whole point
of MIP-maps; if the texture arrives a
frame or two late, the impact on the

scene is minuscule.
Handling linear

motion that causes
new textures to come
into view (say, side-
ward or backward
motion) isn’t too dif-
ficult because those
newly-appearing tex-
tures are easy to
prefetch. If a polygon
comes into view at
time t, then at time
t-1 it was probably
just outside the view
frustum and was
rejected during clip
testing. This brings

the polygon quickly to the attention of
a properly concerned rendering engine.

Rotating the viewpoint can be slight-
ly more difficult because the wedge
widens as distance from the viewpoint
increses. Nevertheless, in practice, a
rotating viewpoint won’t cause severe
problems if adequate prefetching is in
place.

Remember, however, that the quick-
er the motion, the greater the quality
loss, because the area of newly-exposed
polygons (which are now carrying erro-
neous textures) will be larger. Telepor-
tation, therefore, is problematic
because all textures will be unexpected.

These same principles regarding a
moving viewpoint also apply to mov-
ing objects in a scene. Note, however,
that rotating objects impose little stress
on the cache. Textures on rotating
objects first come into view edge-on,
which means they are only necessary
at minimal detail levels. As the poly-
gon spins into view, the necessary MIP-
map level rises in a continuous man-
ner, just as it does for textures nearing
a forward-moving viewpoint.

Survey of Engines in
Progress

In the next section, we
examine texture caching

techniques in use by games
and engines currently in
development. Because these
descriptions are only snap-
shots of prerelease software,
they may not be accurately
representative of the games in
their final forms.

The main purpose of these descrip-
tions is to provide examples of the
design decisions that developers have
employed to suit the games they are
making. Because these game engines
are very different from each other, it
isn’t useful to see these descriptions as
“feature lists” in comparing engines to
determine which is “better.” All the
developers involved have been very
kind in sharing information about
their systems and should be appropri-
ately thanked.
GOLGOTHA. According to Trey Harrison at
Crack Dot Com, GOLGOTHA uses 16-bit
textures that are initially JPEG-com-
pressed; they are uncompressed at the
beginning of each level, so the render-
ing engine only sees them as uncom-
pressed. When unpacked, the textures
are stored in the native formats of the
current display (on 3Dfx Voodoo
Graphics cards, for example, opaque
textures are stored as 565 RGB, textures
with holes are stored as 1555 ARGB,
and textures with a full alpha channel
are 4444 ARGB.)

Because of the high resolution and
large number of textures in the game,
textures reside primarily on disk and
are cached into texture RAM. The game
uses about 700 textures, typically
256×256 in size, requiring around
100MB of storage once they are
uncompressed. Textures are power-of-
two in width and height, but not nec-
essarily square. The smallest handled
MIP-map level is 16×16.

To determine which resolution of a
texture it needs, GOLGOTHA uses a con-
servative estimation scheme based on
the closest (1/z) of the polygons being
displayed. When a new MIP-map is
required, it’s loaded asynchronously
from disk (by a separate thread) into a

G A M E D E V E L O P E R A P R I L 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

52

T E X T U R E C A C H I N G

a.

04BlowF3.gd

b. c.

F I G U R E 4 . Regions of space revealed by a viewpoint
moving in various ways: a is linear motion (sideways); b
is rotational motion; and c is teleportation. The blue
trapezoid represents the position of the view frustum
before movement; the gold trapezoid is the frustum after
movement.

Golgotha, Crack Dot Com.

temporary holding area in system
RAM. At a fixed point in the rendering
cycle, textures are downloaded from
system RAM into texture RAM and
removed from the holding area, elimi-
nating concerns over the threadsafe-
ness of 3D hardware APIs.

Until a texture arrives in memory,
the MIP-map at the closest available
resolution will be used for rendering.
Some MIP-maps will always be avail-
able since the lowest resolution of each
texture is always kept in texture RAM.
Currently, the engine doesn’t prefetch
textures, although the final version of
the game may implement this feature.

Texture memory is organized as a
linked list of free space (used when
finding memory for a new texture) and
a linked list of allocated space (used
when deciding which textures to dis-
card from the cache). An LRU scheme
is used to throw out textures when the
cache is full.

Memory management becomes “a
bit more ugly” under higher-level
APIs such as OpenGL and Direct3D.
With these APIs, the engine will dis-
cover that the cache is nearly full
when an allocation request fails; tex-
tures must then be freed in a slightly
blind manner because it’s not possible
to know what effect their deallocation
will have on the fragmentation of the
heap.

In order to keep the frame rate level,
the main thread is limited in the num-
ber of textures that it can request per
frame. The limit is imposed on both
the number of textures and the total
bytes requested and is adjustable based
on system speed.
CRYSTAL SPACE. This is a freeware game
engine under the GNU license. It was

written by Jorrit Tyberghein.
Crystal Space textures are 8
bits in depth and a power-of-

two in both width and height, but
not necessarily square. Most textures,
however, tend to be square, typically
128×128 or 64×64. Four MIP-map lev-
els are supported.

The engine uses lightmaps, which
can be RGB or monochrome with a
lumel width of 16:1 (see “Generating
Lightmaps” for a definition of lumel).
All source textures and static lightmaps
are stored permanently in system RAM.
The purpose of the texture cache is to
manage the storage of textures generat-
ed by combining source textures with
lightmaps. When a texture is built for a
specific polygon, bilinear interpolation
is used to expand the polygon’s
lightmap up to the necessary resolu-
tion; the source texture is tiled until it
is the proper size. Since those 64×64 or
128×128 source textures can wrap
across a polygon several times, the
cached textures can be “very large.”
Since Crystal Space currently uses a
software renderer, graphics hardware
cannot impose a maximum limit on
texture sizes.

The texture cache is of a fixed size;
when it’s full, an LRU scheme
is used to discard textures
until there is enough space. At
present, C++ memory man-
agement (new and delete) is
used for the texture cache,
though this may be replaced
with a custom memory man-
ager in the near future.
Hyper3D. This engine, written
by John McCarthy, is made to
render exterior scenes and
space environments, with an
emphasis on non-static
objects. Textures are of arbi-
trary sizes and arbitrary multi-

ple-of-8 bit depths. Each
“color” of a texture is an 8-
bit channel representing an
arbitrary property; for
example, a texture contain-
ing RGB color, alpha, and
bump map information is
stored in “40-bit color.”
Each channel is stored con-
tiguously (a buffer consist-
ing of two RGB texels would
be stored as RRGGBB, rather
than RGBRGB). The frame
buffer is also divided into

channels or “output banks.” This mem-
ory organization simplifies the use of
texture mapping operations to create
complex effects. The banks of the
frame buffer are combined into native
format when it’s time to display each
frame. Because of this per-frame trans-
lation, the color model produced by
mapping operations is not restricted to
RGB; HSV textures can readily be used.
Vertex-based lighting is supported, but
because of the customizable screen
mixing, lightmaps can also be used;
they are treated just like any texture,
then used to scale color in the final
buffer synthesis.

Because of the high resolution and
depth of textures, they are stored on
disk and demand-loaded into system
RAM when the renderer tries to use
them. Loading occurs synchronously at
a fixed point in the update cycle; the
number of texture loads per frame is
capped at a maximum (adjustable)
value to keep frame rate level.

When textures need to be displayed
but are not yet loaded, the renderer
draws a flat-shaded polygon instead. As
Hyper3D author John McCarthy says,
“Frame rate was more important than
perfectly correct scenes.”

G A M E D E V E L O P E R A P R I L 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

54

T E X T U R E C A C H I N G

DESCENT 3 from Outrage Entertainment.

The Crystal Space engine by Jorrit Tyberghein.

The Hyper3D engine by John McCarthy.

The texture cache
is a linked list of
256×256-byte
blocks. The cache
manager fits tex-
tures together with-
in these blocks. To
reduce fragmenta-
tion, textures are
rounded up to the
nearest 8-texel
boundary in x and y
(so a 73×131 texture
will take the same
amount of space as
a 79×133 texture:
they will both occu-
py an 80×136 aperture). When a new
texture won’t fit into an available
block, textures are discarded based on
their reference counts (textures being
used 0 times are thrown out first, then
textures being used 1 time, and so on).
If the heap becomes too full or very
fragmented, currently-used textures
will have to be discarded and reloaded
during the next frame. These discards
tend to reduce fragmentation.
DESCENT 3. According to Jason Leighton
at Outrage Entertainment, DESCENT 3’s
textures are stored in 16-bit color; they
are all square and power-of-two in
width. QUAKE-style lightmaps are used,
using lumels at a size of 16:1. Because
there are many lightmaps and each
lightmap is small, the caching system
must efficiently handle large numbers
of small textures, in addition to being
effective for larger textures.

The main purpose of DESCENT 3’s
caching mechanism is to efficiently use
the texture RAM of a 3D accelerator.
All textures from the current game
level are held in system RAM, with the
cache pulling them into texture RAM
as needed.

The square, power-of-two texture
geometry allows the system to manage
texture RAM without the possibility of
fragmentation. Texture memory is
divided into an ordered series of
blocks, each of which stores textures
of a given MIP-map level. There are
seven such regions, with the smallest
storing 2×2 textures and the largest
storing 128×128 textures. Suppose
that the renderer needs to use a new
16×16 MIP-map, but the 16×16 region
is full. First, the system checks the
16×16 region to see if any textures can
be discarded. If so, the new texture is

simply uploaded over the old one. If
not, the 16×16 cache region needs to
grow. It can grow to the left, taking
space away from the 8×8 region, or to
the right, stealing space from the
32×32 region (Figure 5). Heuristics are
used to make the right decision about
which way to grow.

Note that when a region grows to
the right, it steals only one texture
from the neighboring region and gets
enough space to hold four of its own
textures. When growing to the left, a
region must consume four of its neigh-
bor’s textures to produce space for
only one of its own. When memory is
stolen from a region, any textures
residing within the reassigned memory
are discarded.

This memory management scheme
requires direct control over a single,
continuous memory aperture. Many
hardware-specific APIs (such as 3Dfx’s
Glide) support this type of access nat-
urally. However, when using higher-
level APIs such as OpenGL or
Direct3D, such direct control is lost,
and this sort of scheme becomes diffi-
cult or impossible.

KAGE. Terminal Reality Inc. designed
this an engine to render arbitrary
polygonal scenes generated in editors
such as 3D Studio MAX. According to
Paul Nettle, KAGE uses lightmaps with
a lumel width of 4:1. It uses a precise
solution scheme to determine the MIP-
map levels of polygons in the scene.

Textures are of unconstrained size,
but their width or height cannot
exceed 256 texels. The cache is stored
as an array of pages. Each page is a two-
dimensional image and is indexed by a
list of occupied space. Within a page,
textures are lined up from left to right.

Each page stores textures only with-
in a certain range of texture heights.
The global page array can be con-
structed so that each page height is a
multiple of n. (If n is 8, there will be
pages that are 8 texels high, pages
that are 16 texels high, and so on.
Since the height is capped at 256,
there would be 32 different page
heights.) Textures are effectively
rounded up to the nearest multiple of
n in height and stored in the appro-
priate page; the gap between the bot-
tom of an allocated texture and the

h t t p : / / w w w . g d m a g . c o m A P R I L 1 9 9 8 G A M E D E V E L O P E R

55

KAGE, Terminal Reality Inc. Wulfram, Bolt Action Software.

a.

b.

8x8 16x16 32x32 64x64

8x8 16x16 32x32 64x64

F I G U R E 5 . DESCENT 3’s memory management scheme. a: Memory is partitioned
into contiguous regions based on texture size. b: The 16x16 region has grown by
taking space from the 32x32 region.

bottom of a page is wasted memory.
In practice, the amount of waste pro-
duced is very small.

When it is time to allocate space for
a surface, the system searches pages of
the appropriate size for a “best fit.”
This search is capable of examining
continuous groups of allocated areas
and gaps between them to determine
whether that area should be cleared for
the new texture (by comparing the
combined most-recently-used values of
allocated shards and taking the lowest).
WULFRAM. In this game from Bolt Action
Software, textures are 8 bits deep,
square, and power-of-two in width. At
any given time, the game will have
random access to around 2,800 tex-
tures, about 1,500 of which are gener-
ated at the beginning of each level.
Most textures are 128×128, and all
MIP-map levels of every texture are
stored on disk — the size of the texture
store is around 58MB. The caching sys-
tem’s main emphasis is on caching tex-
tures from disk in system RAM.

Detail reduction is employed heavily
in landscape rendering using an algo-
rithm based on Peter Lindstrom’s SIG-
GRAPH paper (see References). To
accommodate this detail reduction, the
engine dynamically generates textures
that are composites of the source tex-
tures in the texture store. Monochrome
lightmaps are also used; lumel width
varies within the scene, but the average
is around 16:1.

A dependency management scheme
is employed to synchronize the fetch-
ing of multiple textures from disk to
build a composite. MIP-maps that are
members of visible composites are
locked in system RAM so that they are
readily available when the composite
needs to be resized or broken into
smaller pieces.

Prefetching is used in several places.
Animations (such as explosion
bitmaps) are fetched several frames

ahead, and the first few frames of each
animation are always locked in system
RAM at their maximum detail levels.
Sky textures near the edges of the view
frustum, as well as ground textures
very close to the viewpoint, are
prefetched.

MIP-map levels 0-3 of all textures are
kept in system RAM at all times. The
fetching of textures from disk is per-
formed asynchronously, and whenever
a texture is not yet ready, its highest
available MIP-maps are used.

The texture cache is not limited in
size, but it’s generally kept small by a
cache sweeper, which looks at 1/16 of
the textures in the cache at each
frame and discards those that have
not been used for 300 milliseconds.
After some reflection, this appears to
be a less than optimal cache design,
but it’s adequate for present purposes.
The texture cache generally occupies
between 2MB and 4MB of system
RAM when resolution is set to
640×480. ■

G A M E D E V E L O P E R A P R I L 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

56

T E X T U R E C A C H I N G

Caching graphics in a game is certainly not a new practice. See Jonathan Clark,
“Object Cache Management,” Game Developer, February/March 1996, for a discussion
of data caching in the 2D game ABUSE; this article will serve as a good introduction for
those not used to thinking about caching.

For implementations of simpler caching schemes used by successful games, the
reader is referred to the source code to ABUSE (www.crack.com/games/abuse) and
DOOM (ftp://ftp.idsoftware.com/idstuff/source).

More information about KAGE can be found at www.terminalreality.com/engine/
kage.html. For other technical info and some research papers that were influential in
KAGE’s design, see www.grafix3d.dyn.ml.org.

Crystal Space executables and source code can be found at www.geocities.com/
SiliconValley/Horizon/3856.

Information about GOLGOTHA, including demo executables, can be found at
www.crack.com/games/golgotha.

Technical descriptions of WULFRAM’s implementation can be found at
www.bolt-action.com.

General information about DESCENT 3 can be found at Outrage Entertainment’s web
site, www.outrage.com. At present, there is not much technical information, but the
site promises to include developer comments in the future.

John McCarthy’s home page, including some tidbits related to Hyper3D, can be
found at www.geocities.com/SiliconValley/Peaks/6846. He can be contacted at
John@McCarthy.net.

A good explanation of lightmaps can be found in Michael Abrash’s “Quake’s
Lighting Model: Surface Caching,” Dr. Dobb’s Sourcebook #260, November/December
1996.

Zen of Graphics Programming (Second Edition) (The Coriolis Group, 1996) by
Michael Abrash is considered a classic.

You can get details about computing texture gradients in screen space in Chris
Hecker’s “Perspective Texture Mapping Part 1: Foundations,” Game Developer,
April/May 1995.

Hin Jang’s “Tri-Linear MIP Mapping,” available at www.scs.ryerson.ca/~h2jang/
gfx_c.html, contains a good introduction to MIP-mapping.

Peter Lindstrom’s “Real-Time, Continuous Level of Detail Rendering of Height
Fields” (SIGGRAPH 96 Conference Proceedings) outlines an algorithm that’s handy for
landscape rendering.

Paul Nettle’s “The KAGE Surface Caching Mechanism” is available at
www.terminalreality.com/engine/kage.html

Discrete Mathematics and its Applications (McGraw-Hill, 1991) by Kenneth H. Rosen
is a good text for helping you figure out power series.

Functions used to determine texture detail levels can be found in section 3.8.1 of
The OpenGL Graphics System: A Specification (version 1.1) by Mark Segal and Kurt
Akeley. It’s available at www.sgi.com/Technology/OpenGL/glspec1.1/glspec.html.

Choosing which elements of a cache to discard is a well-studied subject. For
starters, look up LRU in Operating System Concepts (Third Edition) (Addison-Wesley,
1991) by A. Silberschatz, J. Peterson, and P. Galvin.

R E F E R E N C E S

Many thanks to Trey Harrison at Crack
Dot Com, Crystal Space author Jorrit
Tyberghein, John McCarthy, Jason
Leighton at Outrage Entertainment,
and Paul Nettle at Terminal Reality Inc.
for their indispensable help in supply-
ing information for this article.

Acknowledgements

