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Target Audience 
 
Programmers of realtime 3D applications who intend to implement sophisticated collision 
detection schemes. 

Abstract 
 
Most modern 3D games require some form of collision detection.  This paper presents some 
basic brute force methods of collision detection between polyhedra, successively refining the 
techniques until we are left with a system that runs quickly.  An implementation is examined in 
which a game engine handles 32 players and hundreds of objects in realtime. 

Modus Operandi 
 
Over the past year, we have been experimenting with methods of collision detection for use in 
games.  The goal of this paper is to communicate the experience we have gained. Being an 
exposition of “practice and experience”, this paper does not present any new work in that it 
does not plant a new condominium tract amid the burgeoning fields of computer science.  We 
hope merely to provide observations and ideas that will be useful to others exploring this 
subject.  All the ideas presented here (and many more) would be evident to anyone who sat 
down and experimented with collision detection for a time.  Our main goal is to save you some 
of that time. 
This paper is constructed in a form that matches the evolution of our collision detection system 
over time.  In the first section we begin slowly, taking small steps until a foundation is firmly 
established.  We detail the history of our progress, highlighting key discoveries.  Finally, we 
speed through some advanced concepts, and leave off with some jaded summaries of the 
current state of collision detection research. 

I. What Do You Want? 
 
We wanted to make a game with “good collision detection”, but we didn’t take much time to 
clarify to ourselves what precisely that meant.  We knew that we wanted objects to have the 
shapes of arbitrary polyhedra, and we knew that we didn’t want grossly inaccurate collision 
results: that is, we never wanted to see objects bounce off empty space, and neither did we 
want to see them interpenetrate. 



 

A First Try 
 
If two objects are sticking through each other, and they are both closed polyhedra, then at 
least one face of one object will be penetrating at least one face of the other object.  If we can 
detect this case as soon as it occurs, then “fix” the situation by moving the objects slightly so 
that they no longer penetrate, then we should be done. 
 
Therefore we decided that the logic governing object motion would proceed in a loop like this: 

while the game is running 
foreach entity in the world 

update(entity) 
 

update(entity): 
entity.old_position := entity.current_position 
modify entity.current_position based on entity.velocity and other factors 
if Colliding(entity) then entity.current_position := entity.old_position 

 
Colliding(current_entity)  bool: 

foreach entity in the world 
if entity != current_entity then 

if Entities_Collide(current_entity, entity) then return true 
return false 

 
Entities_Collide(e1, e2)  bool: 

foreach polygon p1 in e1 
foreach polygon p2 in e2 

if polygons_intersect(p1, p2) then return true 
return false 

 
We have not defined ‘polygons_intersect’ here.  Descriptions of how to determine the 
intersections of two polygons can be found in [O94].  It is easier and faster to determine 
intersections of convex polygons than nonconvex ones, so one may wish to compose one’s 
models of convex polygons (there are many good reasons to do this, most of which have to do 
with graphics.) 
 
When objects collided, we chose to move them back to their starting positions, because if 
those were “safe” spots for the objects a moment ago, they will probably still be safe.  One 
alternative is to search through space to find new positions for the objects, which is icky.  But 
there are complications in the method that we chose: for example, when an object is moved 
back to its starting point, we must make sure that it is really still safe; if not (because an object 
has moved into that space in the meantime), we must move the offending object back to its 
own starting position.  The worse that can happen is that we have to revert every object in the 
world to its starting point. 
For the most part, though, the pseudocode above illustrates an extremely basic, extremely 
simple, and extremely slow way of doing collision detection.  Why is it so slow?  If we have two 



objects, each of which is composed of 100 polygons, then when they collide, that loop body in 
Entities_Collide will be executed a lot -- 1002 times in most cases.  Finding whether two 
polygons intersect is not the fastest operation known to man.  On current-day computers, 
doing it 10,000 times is far from instantaneous.  And doing it 10,000 times for each pair of 
objects that may collide, updating the world many times per second, becomes impossible. 
It’s dreadfully slow, but it works (with a few exceptions, which we’ll talk about later).  And 
something that works is not a bad starting point. 

The First Filters 
 
One way to speed up a slow algorithm is to install “filters” which keep the slow part from 
getting run when it doesn’t need to, or which can come up with an easy answer using 
inexpensive techniques.  Immediately we put into place two simple filters that most 
experienced programmers would take as givens: 

A) Segregation is Good 
 
We divide the world into a regular grid that partitions objects into smaller groups, with the goal 
of reducing the number of entity-entity comparisons the system needs to make.  Every time we 
move an object, we compute which squares of the grid it overlaps.  For our engine we chose a 
two-dimensional grid, although it is a true 3D world, because the game is played over a 
landscape and we do not expect many objects to be piled on top of each other. 

B) Bounding Spheres 
 
Before doing the polyhedron-polyhedron check, we look at the distance between the centers of 
the two objects.  If they are further than the sum of the two objects’ radii, the objects cannot 
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Figure 2: a: A game entity, its position (center point), its bounding sphere 
and bounding radius.  b: The distance between two objects’ center points.  
c: The two objects are distant enough that their bounding spheres do not 
intersect; therefore, they cannot collide.  d: Now the bounding spheres 
intersect and, if we’re lucky, the objects will collide soon! 

Figure 1: Because entities A and B overlap into a
common grid square, they will be collision-tes
against each other; C will be tested against no-
one. 

Distance D between P and Q is: 222 )()()( zzyyxx pqpqpq −+−+−                  2222 )()()( zzyyxx pqpqpqD −+−+−=

Bounding spheres intersect if ( , where r))( 22
qp rrD +<= p and rq are the radii of the bounding spheres. 

Figure 3: Some math. 



possibly interpenetrate.  To speed this up slightly, we can check the distance squared versus 
the sum of the radii squared (this avoids a costly square root operation). 

C) I Prefer Jersey 
 
Actually, we originally had a third filter that ran before the bounding sphere test, which looked 
at the Manhattan distance between the objects’ centers.  This was not really worth the bother 
(It almost never saved any execution time worth worrying about) so we deleted it. 
 
Filling In the Gaps 
 
The code discussed so far tests for interpenetration, but that might not be adequate.  I’ve 
never seen a realtime object simulator in which movement wasn’t discrete; that is to say, 
motion occurs by teleporting objects from place to place.  The illusion of smooth motion arises 
because the distances by which the objects “jump” are very small.  But the faster an object is 
moving, the further it must jump during a fixed timestep.  If an object jumps far enough during 
one update, it could “miss” another object, appearing to fly right through it (or part of one object 
could miss part of another, causing strange things to happen).  Our quick fix for this was to 
create a “speedbox” around the object; the speedbox was a bounding box that enclosed the 
full volume of space through which the object might pass during one update.  When testing for 
collisions we would use the speedbox’s shape instead of the 
object’s actual shape.  This violated our original concern that 
collisions should be very accurate, but we waved our hands 
and said that since the object was moving so quickly, nobody 
would see what was going on anyway. 
See, games are cool because you can wimp out like that, any 
time you want.  The most drastic (and only theoretically 
sound) alternative we know of is to represent shapes 
mathematically as functions of their initial space occupancies, 
their velocities, and time, and then solve huge sets of 
simultaneous equations to determine collision.  We do not 
expect this approach to be computationally feasible any time this millennium. 

P(t+1)
P(t) speedbox

Figure 4: When an object moves too 
quickly, we replace it with a conservative 
bounding volume. 

 
Divisiveness is Good 
 
It’s an ancient fact that, if two convex polyhedra do not intersect, one can always find a dividing 
plane between them [Rab95].  Exploiting this fact seemed like a good idea.  We didn’t want to 
limit our objects to convex polyhedra, or have to express them as being composed of such.  
But it is still true that, if objects are mostly convex, then you can usually find a dividing plane 
between them (illustrated in figures 5-7). 
So we wrote another filter called “plane divides entities”, which would heuristically try to find a 
dividing plane between two objects.  And we saw that it was good. 
 



By this point we had built up a stack of “easy”-to-compute filters that would happen before the 
final collision detection, which became known as the “hard case”.  But the hard case was, so to 

speak, still too hard.  And though the filters were very helpful, there were cases when they just 
failed to apply.  When two objects got very close to each other in ways that left no easily-found 
dividing plane between them, the game slowed down unacceptably.  We knew about BSP 
trees, so we cracked open some references and began writing some new hard-case code. 

Dividing plane!!!!!!!!!!

Figure 6: Convex polygons.  
Dividing line.  You can’t find two 
nonpenetrating convex polygons 
between which there is no dividing 
line.  Come on, try.  I dare you.  
The same principle applies to 
polyhedra in 3-space. 

Figure 7: Here we find an 
easy dividing plane between 
the two objects. 

Figure 5, Tragedy of the 
Spheres: Bounding spheres are 
woefully inadequate for some 
common gameplay situations, 
such as the landing depicted 
here. 

We will not attempt to explain BSP trees fully in this paper.  Instead, we refer the reader to 
[Chin95], [FV90], and [Wade95], and provide a brief explanation for the sake of context. 
BSP trees consist of a hierarchy of planes, where each plane divides a region of space into 
two halfspaces.  We can use them to describe a solid object by adopting the convention that 
each separating plane of a leaf node describes a portion of the object’s surface, where one of 
the plane’s halfspaces represents the inside of the object, and the other represents space that 
is outside. 
Binary tree organizations of n nodes can often allow search operations to complete in O(log(n)) 
time, and the collision detection we are trying to perform is fundamentally a search.  Intuitively, 
if we use BSP trees well when testing two objects for intersection, we should be able to handle 
a “hard case” collision test in something like O(log(n)2) time, where n is a typical number of 
polygons contained by an entity. 
We can employ BSP trees to speed up collision detection by using their spatial-partitioning 
properties to reject polygons early.  If we are detecting a collision between two entities A and 
B, and if we know that A lies entirely on one side of some plane P that cuts through B, then we 
need only test A against the parts of B that are on the same side of the plane as A.  (In a 
sense, this is a more sophisticated version of the Plane Divides Entities test, where the 
dividing plane eliminates only part of an object, rather than the whole thing.) BSP trees provide 
us with a myriad of such planes.  So if we recurse down the BSP tree of B, finding whether A’s 
bounding sphere intersects each separating plane (a very cheap operation in itself), we can 
ignore many polygons of B that have no chance of colliding with A.  For each polygon of B that 
passes this filter, we will call a procedure that compares it with every polygon in A.  Some 
sample C++ source code to do this is presented below: 



 
struct Polyhedron { 
    List *faces;        // All polygons contained in this object 
    Point center;       // Center of the object 
    float radius;       // Radius of its bounding sphere 
    BSP_Node *bsp_tree; // BSP tree representing this object 
}; 
 
enum flag_value { 
    TOUCHES_POS_HALFSPACE = 0x1, 
    TOUCHES_NEG_HALFSPACE = 0x2, 
    SLICED = 0x3        // Touches both halfspaces 
}; 
 
struct BSP_Node { 
    float a, b, c, d; // Coefficients of plane equation (ax + by + cz + d = 0) 
    List *polygons;   // Polygons that are coplanar with said plane 
    BSP_Node *positive, *negative;  // Contents of each halfspace 
}; 
 
bool object_hits_world(BSP_Node *node, Polyhedron *solid) { 
    if (node == NULL) return false; 
    int status = classify(node, solid->center, solid->radius); 
    if (status == SLICED) { 
        if (test_solid_against_polygons(node->polygons, solid)) 
            return true; 
    } 
 
    if (status & TOUCHES_NEG_HALFSPACE) { 
        if (object_hits_world(node->negative, solid)) return true; 
    } 
 
    if (status & TOUCHES_POS_HALFSPACE) { 
        if (object_hits_world(node->positive, solid)) return true; 
    } 
 
    return false; 
} 
 
int classify(BSP_Node *node, Point center, float radius) { 
    float distance = (center.x * node->a) + (center.y * node->b) 
                   + (center.z * node->c) + node->d; 
 
    int status = 0; 
    if (distance - radius <= 0.0) status |= TOUCHES_NEG_HALFSPACE; 
    if (distance + radius >= 0.0) status |= TOUCHES_POS_HALFSPACE; 
 
    return status; 
} 
 
bool test_solid_against_polygons(List *polygons, Polyhedron *solid) { 
    Polygon *face1, *face2; 
    Foreach(polygons, face1, { 
        Foreach(solid->faces, face2, { 
            if (polygons_intersect(face1, face2)) return true; 
        }); 



    }); 
 
    return false; 
} 
 
 
 
We can go further than this: after selecting potentially colliding polygons from B, rather than 
testing them against all of A, we can drop them down A’s BSP tree, eliminating collision tests 
with much of A.  By the time we’re done with all that, we should end up performing relatively 
few polygon-polygon intersection tests. 
In our implementation, we choose the smaller of two potentially colliding objects as A, and the 
larger as B (judging by the radii of their bounding spheres).  The reasoning behind this was 
that the smaller object was more likely to fit between the larger’s partitioning planes, thus 
reducing the number of polygons considered (see figure 8). 
 
To facilitate the testing of individual polygons from B 
against A’s BSP tree, we chose to store a center 
point and bounding radius on each polygon of each 
object model.  This is a controversial choice as it 
increases memory usage, and as a bounding sphere 
is a fairly pessimistic bounding volume for a polygon. 

Early Hit Detection 
 
By now things were a lot faster than what we’d 
started with, but of course we still wanted to make them faster.  We figured that, say, if you’re 
moving toward a wall and you collide with it, and you’re going at a reasonable speed, you 
won’t jump too far through the wall — chances are that some vertices from your object will 
actually end up inside the wall (this is illustrated in figure 9.) 

smaller object

bigger object

Figure 8: Smaller object fits nicely between the 
BSP planes defined by Friendly Sock Monster’s 
teeth.

 

a. b.

So we added a new test that classified the necessary 
vertices of each object into the other object; if a vertex 
from A, for example, ends up on the interior of B, you 
know that they have collided, without performing any 
polygon intersection tests.  Though this test is certainly not 
sufficient to determine a collision (again, see the figure), it 
is faster than comparing polygons. 

Figure 9: Under favorable conditions, 
a is more likely to occur than b. 

Eventually we took this test back out.  It did speed up the 
detection of a hit between two objects, but this had a negligible effect on the speed of the 
game as a whole, for one simple reason: objects almost never collide with each other.  For 
example, suppose you throw a big rock at your friend’s face.  The rock will travel toward your 
friend for some time, with little computation being performed because of culling by the early 
collision filters.  But there will come a time when the rock is very close to your friend, and if 



he’s flinging out his arms in desperation to (unsuccessfully) shield himself from the rock, it will 
be difficult to find a simple dividing plane between your friend and the rock.  Therefore, there 
will be many update cycles during which the rock is close to your friend, but hasn’t hit him yet.  
After the rock hits your friend’s head (if he’s not a total klutz he’ll have at least managed to turn 
his face away so that he will not require much plastic surgery), the rock will bounce off and 
travel back in something like the opposite direction.  As you can see, there will be many update 
cycles during which the rock is close to your friend but not hitting, and only one during which it 
hits (figure 10). 
If the “miss” cycles are much more expensive than the “hit” 
cycle, it doesn’t matter how much faster the “hit” test 
becomes.  This is a basic principle of optimization that we 
failed initially to think about, and so perhaps we deserve a 
few rocks ourselves. 

Figure 10: The projectile spends much time 
close to the target but almost no time actually 
interpenetrating. You can empirically observe 
this yourself; all you need is a good friend 
(hard to come by) and a hefty yet very sharp 
rock (abundant). 

Aha! 
 
But then we did do something that sped up the general 
case, which was to perform all those BSP tests substituting 
a bounding box shape for A instead of its true shape.  Only 
if some parts of B collide with A’s bounding box do we go 
and do the full test against A.  This does not take too much 
computation (relatively), and it speeds up the great majority 
of the near-miss cases that occur in our particular game. 
Finally, we added a simple “bounding box safety” test that ran before Plane Divides Entities, 
which quickly checked to see whether the two objects’ bounding boxes overlapped.  (This test 
is similar to the OBB testing discussed later in this paper, but with only one bounding box per 
object.)   

Accuracy is a Virtue 
 
We have presented a few ways of using bounding volumes and dividing planes, but when 
using these one must be very careful not to be bitten by the evil spectre of Numerical Roundoff 
Error.  To illustrate this, we'll look at the bounding sphere test.  We might initially compute the 
bounding sphere for some object like this: 
 
    longest_radius := 0.0 
 
    foreach vertex in the object 
        vertex_distance := distance from vertex to object's origin 
        if vertex_distance > longest_radius  
            then longest_radius := vertex_distance 
 
When we perform this computation, we will end up with a number that is somewhat close to 
the correct radius of the bounding sphere (though it will usually not be exact, not even to the 
precision of whatever numerical representation we are using, because error will accumulate 
through the compound mathematical steps we perform to find 'vertex_distance'. 



 
Let's say, for the sake of argument, that the bounding radius we compute ends up being a little 
bit smaller than the right answer.  You can see how, if the bounding sphere is too small, a 
bounding sphere filter test could decide that there is no collision, when in fact there should 
have been (because the little bits of the object that are poking through the sphere have 
collided). 
 
It's much worse than that, though.  To detect a collision between two objects, we want them to 
be in the same coordinate system, which means we have to push at least one of them through 
a transformation matrix. Unless we are using very, very precise and picky math for 
representing the matrix (game programmers generally won't, for reasons of speed and 
schedule) then by the time a vertex has been transformed, all hell 
has broken loose in terms of numerical accuracy (especially since the matrix isn't very 
accurate to begin with -- think about all the operations you perform to compose a matrix and 
you'll understand.)  If this error ends up pushing the vertex further away from the center of the 
object during transformation, the discrepancy between conclusions reported 
by the bounding sphere filter and by the hard case will grow accordingly. 
 
Collision detectors that are supposed to work together but end up contradicting each other are 
very bad, especially if you're trying to maintain any kind of system invariants.  For our system, 
we decided that it must always be true, when the server is in the steady state, that no objects 
interpenetrate.  Yet if the bounding sphere test causes a collision to be ignored, we might find 
two objects interpenetrating at the beginning of an object update.  This Is Bad.  It still happens 
in our system; we deal with it by calling an emergency routine that removes an object from the 
world and then tries to put it back in an arbitrary place as close to its last position as possible. 
 
They Are Not For You 
 
“What do you want?” can be a very difficult question to answer.  In our case it turned out that, 
back in the beginning when we asked ourselves what we wanted, our answer was insufficient.  
All along while writing our collision detection routines we assumed that we would be able to 
just plug in some equation-solvers and have some really neat looking physics, rather than the 
“reverse the object’s velocity” kind of bouncing we had started with. 
It turned out that, in order to maintain a physical simulation system in which awful 
computational mistakes did not happen, we needed to be very accurate about where and when 
collisions took place – otherwise objects would get stuck, or they would bounce themselves 
further into the object they were supposed to be repelling, and then go flying off into outer 
space at ten times the speed of light.  Or worse. 
To find the exact time of collision, we would perform a binary search in the time domain – if the 
timestep started at time t, and we found that objects A and B were colliding at time (t+1), then 
we would backtrack them both to time (t+0.5) and test them again.  If they’re still colliding, we 
go further backward in time; otherwise we go forward again.  We stop when we find the earliest 
time at which A and B were still not colliding, down to a resolution of t that we find personally 
satisfying. 



Once we find the collision time, we compare A and B to find the closest features of each object 
to the other.  Each feature that we find to be close enough to the other object, we consider to 
be colliding, and pass that information to the physics system. 
 
 

Let’s Rock 
 
Now we’ll examine the effectiveness of the various filters in a simple game situation.  The 
numbers were acquired in the following situation: the author joins a game server and flies a 
hovertank, using it to drop a cargo box onto the landscape.  When the box hits the 
landscape, it disappears and deploys a repair pad, appearing in its place.  The repair pad 
pivots and slides against the ground until it comes to rest.  (Once the pad comes to rest, it is 
marked as sleeping, which means that no collision detection or physics routines will act on it 
until it is upset by an outside force.)  The hovertank then turns around and touches down on 
the repair pad (in a concave area, such that there are no dividing planes), then takes off again 
and flies away. 
 
 # of polygons 

before BSP  
 

hovertank 97 111 
cargo box 12 12 
repair pad 69 76 

# of p
after BSP 

t

olygons entity type 

 
Here is a listing of collision tests, the number of times during the sample run that they were 
effective (came up with a definitive answer about the status of a collision), the percent of all 
cases for which they were effective, and the average amount of time taken for one test (timings 
taken from a Pentium 166 running Linux, program compiled with gcc –ggdb –O3 –m486). 
 
 
 
 
 

bounding spheres 3800 tiny
bounding box safety 1911 26.13µs
plane divides entities 93 231.94µs
BSP hard case 842 450.98µs

Cases 
effectively 
handled 

Average time 
per case Collision Test 

 
This diagram shows Plane Divides Entities to be a fairly ineffective, yet expensive, test.  This is 
true, though it did not appear that way to us originally.  Before we added Bounding Box Safety, 
PDE was much more effective than shown above (though it was still just as expensive).  
However, once it was added, Bounding Box Safety stole most of the easily filterable collisions 
away from PDE.  At present it looks like we will end up junking PDE.  Furthermore, if [Got96] is 
as good as they say, Bounding Box Safety will get even faster. 
 



Note the high percentage of the time that the system resorted to using the BSP hard case; in 
some sense our test run is a pessimistic measurement since during landing the hovertank 
becomes intertwined with the repair pad, much more messily positioned than the average 
player is during the majority of gameplay.  Extrapolating from these performance numbers, our 
system would slow down uncomfortably if all 32 players in a full game decided to land on 
complex structures at once.  However, we believe that the system meets current needs. 
 
The code for the collision detection algorithms themselves is not optimized; we spent all our 
time dealing with the software engineering intricacies of putting together a modern game.  It 
seems likely that simple optimizations could speed up each test by several times, though we 
feel it would be more worthwhile to modify the algorithms. 

Conclusions, Current Work, and Future Concepts 
 
The use of easy filters and BSP trees has sped up our system drastically beyond the simple 
brute force approach, but there is plenty room for further drastic improvement. 
BSP trees require a fair amount of computation to construct, and once built, they cannot easily 
be modified except in very special cases.  Because of this, BSP trees are not very useful for 
objects that change shape.  (They can be used for precomputed 3D mesh animations; you just 
precompute one BSP tree per frame of animation.  That whole technique, however, has 
unappealing limitations.) 
Several researchers have gone about creating high-performance collision detection systems.  
Here we summarize a few such systems and provide our own comments. 
 
Philip M. Hubbard describes an algorithm in [Hub96] that uses a hierarchy of spheres to 
represent an object.  This is appealing at first because sphere-sphere intersection is very 
cheap.  Hubbard engages in expensive precomputation to find a good fit of spheres for a given 
object, which makes the algorithm less attractive for simulating non-rigid bodies.  Also, many 
spheres are required to represent complex objects with reasonable accuracy, and the memory 
required to store said spheres becomes large.  Finally, it does not seem that this algorithm will 
perform well for objects that are tightly intertwined – though the results presented in Hubbard’s 
paper are hard to interpret, as they are unclear at best. 
 
[Pon] and [Lin] describe methods for detecting collisions by tracking the closest sets of 
features between potentially colliding objects.  Such methods are appealing because they 
might scale up very well: if we can isolate the features of an object which are candidates for 
collision, and we can navigate the objects as they rotate to incrementally consider new 
features, then we do not even need to transform most of an object’s geometry to test it for 
collision in common cases.  These methods generally involve building Voronoi diagrams for 
the shapes in question – an expensive procedure which again limits us to rigid bodies, and 
which is further troublesome because numerical accuracy is a notorious problem in the 
construction of a 3D Voronoi diagram. 
 



More recently, [Got] et al propose using hierarchies of Oriented Bounding Boxes (OBBs) and 
testing for intersection between these boxes using a quick test based on a separating axis 
theorem (which is another way of saying that there always exists a separating plane between 
two convex polyhedra).  The basic ideas bear similarity to Hubbard’s, though the methods for 
approximating shapes and testing intersections are completely different.  OBB-trees will 
generally fit a shape better than Hubbard’s spheres for a given number of subdivisions, but 
they require much more memory, so a sphere-approximation system could use deeper trees 
within the same budget.  The performance figures that Gottschalk et al present are impressive, 
though the examples they present in the paper include non-rigid objects and they neglect to 
show performance numbers for recomputation of the OBB-trees. 
 
Where do we go now? 
 
Speaking for ourselves, it seems likely that in the next major revision of our engine we will 
abandon BSP trees and instead use a hierarchy of bounding volumes.  Rather than require the 
bounding volumes to fit shapes as closely as Gottschalk or Hubbard, we will probably use 
looser-fitting volumes with correspondingly shallower trees.  Each bounding volume would 
contain a list of the features it encloses; once we had determined that some set of leaf-node 
volumes between two objects intersect, we would perform n2 collision detection between pairs 
of offending volumes (though at this point n would be very small.)  Both spheres and axis-
aligned bounding boxes are appealing candidates for such volumes, since they do not 
necessitate the successive matrix operations required by OBBs. 
 
Hierarchies of bounding volumes could be made to work quite well for dynamic shapes; if a 
moving feature is allowed to stretch the bounding volume that contains it, and if that stretching 
propagates itself up to the root of the hierarchy, then a moving shape will always have a valid 
bounding hierarchy which is quickly computable.  (Continued validity would be assured so long 
as we never allow a bounding volume to shrink past its original dimensions.)  The bounding 
hierarchy for a moving object might slowly degrade over time, but subtrees of the bounding 
hierarchy could be incrementally recomputed to maintain a tight fit at little computational cost. 
 
Hierarchies which store shape features are also a natural fit to our needs, since the data 
structure would be equally useful for determining collision and finding closest feature sets, and 
in fact the procedute which tests two objects for collision might return sets of closest features 
as an incidental side-effect.  This would be very nice compared to our current closest-feature 
routine, which is very slow. 
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