
An Introduction to the Rush Language

Adam Sah �, Jon Blow, and Brian Dennis

Computer Science Division
Electrical Engineering and Computer Sciences

University of California
Berkeley, CA 94720

fasah, blojo, xjamg@cs.Berkeley.EDU

May 29, 1994

Abstract

Rush is a new language that looks and feels much
like Tcl [?]; we offer a compiler that executes scripts a
hundred times faster than Tcl 7.x, allowing programs
to run at speeds close to their C-language counter-
parts. Rush incorporates many features from Tcl and
contains new features. From Tcl, Rush acquires its
syntax, “everything is a string” model, set of core
commands and datatypes, scoping rules, C callout
facility, and support for popular libraries, including
Tk and Tcl-DP. New features in Rush include pass-by-
reference, first class closures and production rules.
A generalization of operator syntax allows users to
code in either command-style or operator-style syn-
tax; a converter program provides a translation be-
tween the two forms. We introduce the language as
a set of changes to Tcl, with a focus on performance
issues and discussion of new features.

1 Introduction

1.1 Design Rationale

Rush is a new language whose syntax, semantics
and runtime libraries mirror those of Tcl. Our goal is
to maximize the performance and utility of our lan-
guage without abandoning the features that make
Tcl popular. To that end, Rush largely preserves Tcl
compatibility while increasing performance two or-
ders of magnitude and adding several new language
features.

Rush arose from a desire for a faster Tcl that would
run applications at speeds near those achieved by

�This work was supported in part by NSF grant #IRI9107455.
This work originally appeared as part of the Tcl’93 Workshop.

their C equivalents. Realistically, this requires com-
pilation of time-critical pieces of scripts into efficient
machine code, a process not practical for Tcl given its
semantics.

Rather than adopt Tcl syntax verbatim, we decided
to make modifications to it, in response to frequently-
voiced complaints that Tcl syntax is sometimes too
verbose for expert users. Rush provides terse syntax
for mathematical operations, variable assignments
and other common forms. Rush still supports Tcl’s
familiar command syntax, though, and the availabil-
ity of familiar Tcl core commands helps ease the tran-
sition to Rush for Tcl programmers.

Rush supports the features that have made Tcl pop-
ular. Specifically, these include Tcl’s “everything is
a string” type model, a scoping system that allows
variables to be used without predeclaration, the C
callout mechanism, and integrated support for user
libraries, notably Tk (the user-interface library) and
Tcl-DP (the distributed programming library).

Rush also adds new language features, the most
important of which are production rules. Though pro-
duction rules are unconventional in general-purpose
languages, we have already found several interesting
uses for them. We hope that our implementation will
make them inexpensive enough and easy enough to
use as a general programming tool.

In short, Rush provides much compatibility with
Tcl, adds new features, and runs substantially faster.
The remainder of this paper will discuss our moti-
vation for wanting a high performance scripting lan-
guage, give an overview of Rush, describe our cur-
rent implementation, present performance results,
and discuss future work.

1

1.2 Motivation for High Performance

The desire for improved performance in the execu-
tion of Tcl scripts is often voiced on the Tcl news-
group, comp.lang.tcl. Tcl offers some of the poor-
est performance of interpreted scripting languages,
such as Perl[?], Python[?], and xlisp. The argument is
that Tcl performance doesn’t matter. This is true for
Tcl procedures that are tied to I/O operations such as
network reads and user-interface events. The time
required to perform these operations is large com-
pared to the overhead of executing a simple Tcl script,
thus effectively hiding Tcl’s sluggish performance.

In practice, there are a few cases where this “speed
doesn’t matter” philosophy breaks down. One case
is that when an application starts up, it typically
must initialize large tables of information. Since this
involves little I/O and the user must wait until its
completion, startup times for Tcl applications can be
long and frustrating. Also, slowness in a scripting
language lessens its utility in coding even moder-
ately expensive algorithms; in Tcl, the programmer
is forced to write such functions in C, negating some
of the benefit of using Tcl in the first place. For ex-
ample, the Perspecta Presents! slide-making program
consists of�29,000 lines of C code and only �13,000
lines of Tcl code. The tendency to write large sections
of code in C for performance reasons was verified in
the results of a comp.lang.tcl survey [?]

Rewriting Tcl code in C can be a heavy time sink,
and once is done, the incremental development of-
fered by high-level script interpretation is lost for-
ever. Some procedures are messy to rewrite in C; this
is especially true for procedures that interact with the
interpreter state (mutating Tcl variables) or perform
the string operations that the Tcl language makes so
easy. In these cases, it is clear that Tcl is the pre-
ferred language for the job, yet the programmer is
forced to code in C. In the most painful case an en-
tire application must be rewritten, as with the Caste
object-oriented library [?].

Finally, many programmers would like to write
entire applications directly in Tcl. For example, Tk-
Man, the Unix manual page browser, is written en-
tirely in Tcl. In such cases, the choice to rewrite code
in C complicates the installation process and raises
concerns of portability.

1.3 Previous Work: Optimizing Type
Conversions

One attractive feature of Tcl is that all values can
be treated as strings; Tcl commands parse their argu-
ments from strings into the types they want and then

operate on the parsed values. Internally, the original
implementationof Tcl (hereafter called Tcl7.x, to allay
confusion; Tcl refers to the language definition and
not a specific implementation) stores all values as
strings and passes these strings as arguments, which
produces this behavior naturally. However, conver-
sion between strings and other value types is slow.
The following Tcl code is a good example:

for {set x 0} {$x<1000} {incr x} {
... loop body here ...

}

All of the arguments to for are strings. At every
iteration of the loop, $x�1000 must be tested to
see if the looping should continue, and the incr
x must be run as a command. In each iteration,
Tcl7.x parses$x�1000 into a math expression before
testing for loop continuation. Since the value stored
in x will be a string, it must convert the value to an
integer (and do the same with 1000) and compare
them. Every time Tcl7.x reaches the end of the loop,
it must likewise parse incr x as a command and
call incr . incr will convert the string value of
x to an integer, add 1, convert that value back to a
string, and store the result in x . In addition, the
body of the for loop is a string and must be parsed
as a sequence of commands at every iteration of the
loop.

This adds up to a lot of unnecessary conversion,
the expense of which often dwarfs the amount of use-
ful computation being performed. This is why Tcl7.x
executes loops so slowly. In the Tcl compiler project,
TC [?] [?], we remedied this problem by caching the
results of type conversions with variables. Running
under TC, the example above would parse x as an
integer once and operate only on integers thereafter.
In the end, TC offered a 5x-10x speed improvement
at the expense of major changes to Tcl’s internals.

1.4 General Compiler Optimization

A big component of optimization is code transforma-
tion. Optimizing compilers often change the code the
programmer has written, moving expressions and
eliminating redundant calculations. The better the
optimization, the less the final product resembles the
original program.

Some of Tcl’s features assume things about the
structure of running code, severely limiting the opti-
mizationsa compiler can perform. We have done our
best to replace such features with less-devastating
forms of the same expressive power. A full descrip-
tion of possible compiler optimizations and their in-
teraction with language features is well beyond the

2

scope of this paper; at appropriate times, however,
we present short summaries of the ways in which
features interact with optimization. Those who re-
main unconvinced should see [?] and [?] for rigorous
explanations.

2 Language Overview

2.1 Basic Types in Rush

The Rush type system behaves like Tcl’s, complete
with string representations for all datatypes and au-
tomatic type conversion as needed by primitives. Its
implementation echoes that of the Tcl compiler, with
native types stored whenever possible, and dynamic
type conversion used to provide strings and/or other
types when primitives demand them. Like TC, Rush
uses one conversion procedure per type. Rush even
offers a nearly identical set of base types as Tcl and
TC:

2.1.1 Strings

Strings in Rush are delimited by double quotes. Like
Tcl, a special set of operators is available for string
substitution within double-quoted strings. This
lends nearly identical behavior to Tcl for such val-
ues.

set a 5; puts stdout "a is $a"

2.1.2 Numbers

Numbers in Rush are expressed in the usual way.
Functions are provided to operate on numbers, such
as add and mult. For each such command, we pro-
vide a syntactic operator borrowed from C (see the
section on “Generalizing Operator Syntax”). Thus,

a = 4; a++; b = $a*5

is identical to:

set a 4; incr a; set b [mult $a 5]

Thus, the expr command in Tcl serves little pur-
pose in Rush, although we provide one for backward
compatibility.

2.1.3 Procedures

Rush offers procedures as first-class data types and
reserves curly braces for their syntactic representa-
tion. Although braces in Tcl are used to enclose lit-
eral strings, these literal strings are often Tcl scripts
passed as arguments to commands; this guides our
choice of syntax. Here is an example:

set a 5
set x {incr a; puts stdout "a is $a."}
puts stdout "About to run ’x’:"

note that no "eval" is needed here,
since Rush already knows about $x
as a script: it’s a proc taking no
arguments.
$x

This will print:

About to run ’x’:
a is 6.

The first line sets the value of x to be a script, and
the last line runs x as a command. Procedures in
Rush are just variables that refer to scripts. They
can be created with names or without. The ability to
define procedures without names is often convenient
when using a procedure as a return value or the value
of a variable. Here is an example of the latter:

Standard Tcl-like use of "proc"
proc add1 (x, y) { return $x+$y }
set add2 [proc (x, y) { return $x+$y }]

add1 4 5
add2 4 5
The answer to both is 9.

Braces without the proc keyword are a shorthand
for creating procedures with no arguments; these are
often used by commands like for :

for {set i 0} {$i<1000} {incr i} {...}

2.1.4 Lists

In order to distinguish lists from procedures, Rush
lists are delimited by parentheses:

set a 6
lindex (5, $a, "hello") 2

yields the answer 6. List items may be of any type,
although string constants require double quotes.
Likewise, in the example above, the first element is
the integer 5, not the string “5”. This is important
for performance, because a procedure that assigns
the same constant list to a local variable should not
be forced into assigning strings, which later require
parsing before use.

3

When converting from strings to lists, Rush uses a
similar system to Tcl, only commas delimit items, and
items have leading and trailing whitespace removed.

[list "a, (b, c), d, e"] ==
("a", ("b", "c"), "d", "e")

2.1.5 Associative Arrays

Associative arrays are collections of associated keys
and values. We provide a syntax for array literals,
as well as one for indexing arrays. The example
below maps strings to values, but our current im-
plementation supports both string and integer keys,
and values can be of any data type. The ability to
use integer keys is provided for high performance in
special cases. Since all Rush values have string rep-
resentations, any type can be effectively used as an
array key, though it will be converted to string form.

set a ("cliff steele" :: 16384,
"crazy jane" :: 69105,
"mr nobody" :: 90028)

set b a:("crazy jane")
The result is 69105

2.2 Using the Type System

The Rush type system allows explicit checking and
assertion of the type of a given value. For each type
that the system understands, an is-a function exists
whose name is of the form typename?. This func-
tion accepts one argument and returns a boolean de-
scribing whether the value passed is of the desired
type. For example, if we were to construct a type
called number, the is-a function might be defined as
follows:

proc number? (x) {
return [int? x] || [float? x]

}

Each type also has an assertion function whose
name is that of the type itself. The function accepts
either one or two arguments, with the first being the
value to coerce and the optional third argument be-
ing a procedure to call if the coercion fails. If no such
function is provided, a system default is used, issu-
ing messages similar to Tcl’s: “expected $typename
but got $value”.

Rush coercion functions can be implemented as
user-level procedures. Here is the coercion function
for the number type above:

proc number (x, errfun = def_errfun) {
if {number? x} {return x}

if it’s not already a number, go to
string form, then convert back.
note: since all values have string
representations, no error function
is needed when cvt’ing to string.
s = [string x]

pass the error function onto the
floating point converter.
return [float x errfun]

}

Type assertions are therefore a handy tool for lo-
calizing errors in the under-constrained type system
provided by languages like Tcl and Scheme. Without
them, malformed data can pass through large sec-
tions of code unchecked, erroring only when passed
to a core command. Instead, the lightweight syntax
of assertions makes it easier to capture such errors.
An example of

typed declaration of new variables
proc foo {

create a new variable ’a’, assign
it the value 7 and coerce it to
an integer.
int a = 7

find or create the global variable
’b’. If it exists, coerce it to
an integer.
global int b

...
}

Likewise, we added type assertions into our proce-
dure declaration syntax as optional argument modi-
fiers:

proc foo (int x, y) {...}

is equivalent to

proc foo (x, y) {int x; ...}

While this is a minor change, as a matter of practi-
cality such lightweight syntax is very important be-
cause it lowers the barriers to adding type informa-
tion to code. The hypothesis is that in a dynami-
cally typed system, it is by definition impossible to

4

force programmers to supply type information ev-
erywhere, but it is highly preferable to do so in select
cases, from both optimization and software engineer-
ing standpoints.

The existence of typechecks which do no useful
work in correct code may spark concern about perfor-
mance. However, we provide a compiler flag which
ignores debugging typechecks; production code will
not be slowed by such debugging aids.

2.3 Scoping in Tcl and in Rush

Tcl offers three kinds of scope transitions for access-
ing variables: global, uplevel and local. Globally
scoped items are those defined in the toplevel inter-
preter script, and must be explicitly imported into a
procedure’s local variable list. Uplevel variables are
those in a procedure’s caller’s scope. Since all pro-
cedures are ultimately called from the global scope,
global variables may be thought of as a special case
of uplevel variables. Local variables in Tcl are all
other variables that are defined using the “set” com-
mand. Unlike C, C++, and Pascal, Tcl requires no
declaration of variables prior to their use.

Rush offers nearly identical facilities to Tcl for
global and local variables, including the ability to
create new global variables from within procedures.
However, Rush removes the ability to use uplevel
variables, and thus removes uplevel and upvar
from its lexicon. In the upvar and uplevel com-
mands, Tcl offers a feature that the programming
language community calls dynamic scoping. This
variable scoping technique allows procedures to lo-
cate variables based on the runtime calling sequence:
procedures can peer into your caller’s scope. Since
calling sequences can only be known at runtime, dy-
namic scoping requires runtime support, dramati-
cally increasing the overhead of local variables. By
comparison, under lexical scoping (where you can
only peer into textually surrounding blocks), the po-
sitions of visible variables can be fully determined at
compile time. C employs lexical scoping; Lisp and
Tcl employ dynamic scoping.

It is difficult to implement dynamic scoping ef-
ficiently. The ability to perform operations like
uplevel and upvar requires that variables in
higher calling scopes be indexable at runtime; the
overhead of maintaining data structures to make this
possible dramatically slows the runtime system be-
cause all functions must create and maintain this ta-
ble, which in Tcl is implemented as a hash table of
variable names and values. Also, if procedures are al-
lowed to modify their callers’ scopes unpredictably,
the values of variables must be stored in predictable

and modifiable locations, which means that they can-
not usually be held in registers; nor can variables be
eliminated from a procedure body. For a complete
discussion of the troubles of dynamic scoping, please
see [?].

The commands uplevel and upvar are used
fairly often in Tcl, so if we wish to remove them,
we must provide a mechanism that meets the same
needs. A survey of comp.lang.tcl readers showed
that upvar and uplevel are used mainly for
two things: modifying the values of parameters to a
procedure and executing blocks of code passed to the
callee, where the evaluation must occur in the caller’s
scope to be correct. This latter usage is typical of user
level control constructs, commands that control flow
over a body of code, with the usual example being
the for command.

To enable procedures to change the values of their
arguments on the caller’s side, we use the idea of
reference parameters. In the tradition of languages
like Pascal, reference parameters are denoted by the
keyword var in an argument list. When a refer-
ence parameter is changed, the value of the argu-
ment on the caller’s side changes as well. Here is
a sample implementation of the command incr in
its two-argument form, where both the variable and
the value to add are given as arguments.

Tcl implementation of "incr"
proc incr {x i} {

upvar x; set x [expr $x+$i]
}

Rush implementation of "incr"
the "var" indicates that x is
a reference parameter.
proc incr (var x, i) { set x ($x+$i) }

As we have seen, curly braces enclose lists of com-
mands to be treated like procedures. The variables
mentioned inside such a script refer to values in the
procedure that where the script is created, not the
one where it is called. Here is an example:

proc run_as_command <x> {
set a "*in local scope*"
puts stdout "Running command:"
x

}

set a "*in global scope*"
run_as_command {

puts stdout "a is $a."
}

5

In this example, we have a global variable a with
the value “*in global scope”, and another variable a
local to run as command that holds the value “*in
local scope*”. Running this example will result in
the following output:

Running command:
a is *in global scope*.

because the anonymous function that is passed to
run as command was formed in the global scope,
the value of a inside it refers to the global variable
a , which holds 5.

By composing this mechanism with the Rush ex-
ception handling mechanism, it becomes possible to
efficiently implement user level control commands
like for . In fact, the core commands for and
while are implemented as compiled Rush code.

2.4 Generalizing Command Syntax

Rush procedure calls are written in Tcl’s cmd-arg-
arg-arg style (“command syntax”). However, we
felt the need to respond to complaints about the
verbosity of this format. For example, where x++
suffices in C to increment an integer variable, Tcl
users must specify incr x . When indexing arrays,
Tcl requires one to write[lindex $list $index]
where the C equivalent is list[index].

We decided that special syntax to express com-
mon language idioms would improve readability.
This is not a radical change; Tcl itself already sup-
ports a few syntactic operators. For example, Tcl
array variables are essentially hash tables keyed on
strings; therefore, we can expand the operator form
of $array(index) into [hashtab find $array
index]. Likewise, dollar-sign substitution within
quoted strings is shorthand for a call toconcat: "hi
$a" expands to [concat "hi" $a]. With this in
mind, it seems reasonable that syntax for commonly-
used commands like set and expr might be effec-
tive in reducing verbosity. The dividing line of too
much operator syntax, beyond which code becomes
unreadable, is a fairly arbitrary separation; we are
careful to draw this line conservatively and not to
overstep.

However, command syntax offers users new to the
language or feature set the ability to easily identify
the function being invoked for a given statement. It
is then possible to find this command in a manual,
for example. By comparison, a--ib is legal in C and
yet indescipherable to non-experts.

A solution to this dilemma is to assign all operators
to unique commands. Then it becomes possible to
convert from command form to operator form on

an operator-by-operator basis. If the user specifies
which operators she likes, all other operators can be
expanded into their command forms. The inverse
transformation can also be applied. If this transform
program is invoked before each call to the user’s
editor, then code may be seamlessly transferred from
one user to another, even if the twousers have chosen
different sets of operators to display.

In most cases, Rush core commands and syntax
mirror Tcl’s, so code is generally compatible. For
example, though Rush variables need not be delim-
ited by dollar signs, we offer dollar-sign notation for
backward compatibility and because it is necessary
when substituting items into double-quoted strings.

2.5 Rules in Rush

2.5.1 Introduction to Rules

A rule is a predicate attached to a list of commands.
[?] Any time during the course of program execution
that the predicate becomes true, the list of commands
is run. This is unlike an ’if’ command, which only
tests a predicate at one point in the program. A rule
is like an ‘if’ command that is always watching.

Here is an example of a rule declaration in rush:

on { $x < 10 } do { puts stdout $x }

This means that whenever x acquires a value be-
low 10, the value will be printed.

Rules in Rush are implemented with a mechanism
akin to Tcl’s write traces, though traces in Rush are
much faster. One could attempt to implement the on
command in Tcl using write traces, but it would be
difficult and very slow because Tcl’s dynamic scop-
ing and unavailability of the “old” value when cap-
turing write traces.

We will now discuss some interesting uses of rules.
We will speak of rules “firing”; when a rule fires, its
predicate is tested, and if it is found to be true, the
action will be run. The rule above will fire whenever
the value of x changes, though the action will only
be run when x is less than 10.

2.5.2 Expressing Invariants Using Rules

An invariant is a condition that must always be true
if a program is correctly running. If an invariant
ceases to be true, either the program is faulty or the
algorithm it implements is ill-conceived. Expressing
invariants in a program can be a great aid to debug-
ging, especially when implementing large systems.

Some languages provide mechanisms for check-
ing invariants at specific points of a program; for ex-
ample, C defines the macro assert in its standard

6

library. These traditionally work as if statements;
but the ’on’ command in Rush is a natural way to
express continuous invariants, that is, invariants that
should always be true for a given set of variables, at
any point in the program where those variables exist.

Since rules are placed on variables, reference pa-
rameters interact with rules the way one might ex-
pect: that is, a rule placed on a reference parameter is
also placed on the variable on the caller’s side. This
allows us to create procedures that place rules on
variables. Here is an example of a procedure that at-
taches an upper-limit to a variable, so that a warning
message is printed if the limit is ever exceeded:

proc upper_limit (var x, int lim) {
on { $x > $lim } do {

puts stdout "value over limit."
}

}

Rush provides a way to talk about the “old” value
of a variable (the value as it was before it was mod-
ified by the change that fired the current rule). The
unary operator “�” before a variable name indicates
that it refers to an old value.

Here is a rule declaring that the variable x should
never decrease for any reason:

on { $x < $˜x } do { warn_about $x }

The predicate $x � $�xmeans “is the new x less
than the old x?”.

At the end of this paper we delve a bit deeper into
the use of rules for expressing invariants.

2.5.3 Using Rules in General Purpose Code

Predicates can be arbitrarily complex. We now show
some uses of production rules as general-purpose
tools that create less bulky code. Our first example is
a self-refilling list; suppose we wish to extract items
from a list and have the list automatically refill itself
when it becomes empty:

on {[llength $l] == 0} do {refill_list l}

In a sense we have created a new data type with
this ’on’ statement, turning the list ’l’ into a new
type of “self-refilling list”. This list can be ac-
cessed and modified using the commands and op-
erators supported by Rush, and it will perform as
desired; no new accessor functions are required. Un-
like standard encapsulation techniques, ours is re-
versible: such rules can be easily removed (although

we haven’t shown the syntax for doing so), yielding
the original behavior.

Our second example is a ring buffer: suppose we
wish to treat a list as a ring structure: that is, we want
to move around an index to that list, and if the index
goes off one end we want it to wrap to the other.
Ring buffers is often useful when implementing fea-
tures such as a shell’s history list, or remembering
scrollback for a text window.

If we change the value of the list index often in
the code, it becomes ugly to explicitly check to see if
the value should wrap after each of these changes.
Instead, we could use ’on’:

int i
list l

If we’ve scrolled off the right,
wrap to the left.
on {i >= [llength l]} do {

i -= [llength $l]
}

If we’ve scrolled off the left,
wrap to the right.
on {$i < 0} do {

i += [llength $l]
}

And due to the magic of reference variables, we
can encapsulate these calls in a procedure, so that we
could use them all over the place. In this modified
version we use some of Rush’s extended operators
for brevity.

proc wrapping_index <var int i,
var list l> {

on {i >= [llength l]} do {
i -= [llength l]

}

on {i < 0} do {
i += [llength l]

}
}

Because the i and l in wrapping index are ref-
erence parameters, the two rules created by each call
to wrapping index are attached to the variables on
the caller’s side.

We can use wrapping index whenever we have
a list and an index for it:

int i

7

list l

wrapping_index $l $i

In essence, wrapping index binds a list and an
integer together into an active data structure, on in
which l and i automatically respond to each other’s
values.

One limitation of rules in Rush is that they assume
that procedure calls depend only on the values of
their parameters. A procedure whose return value
depends on other factors (such as the values of global
state variables) may cause a rule’s predicate to be-
come true, yet the rule will not be fired. We say
that such a procedure does not preserve referential
integrity. For an easy illustration you might imagine
the following rule:

"random" is a procedure that returns
either true or false, at random.
on {random 10 == 5} do {

puts stdout "Hai-Keeba!"
}

This rule is nonsensical because there is no way to
know when it should be fired. There are rules which
do not preserve referential integrity yet make more
intuitive sense. We do not attempt to support these
cases because we consider them relatively unimpor-
tant in terms of usefulness, and because under our
implementation scheme deciding when to fire such
rules is computationally intractable.

A thorough treatment of rule semantics, including
a description of rule composition, will be given in a
forthcoming paper.

3 System Architecture

Rush consists of a parser that emits Scheme code,
a set of runtime libraries written in Scheme, and
a small amount of C code to interface to the op-
erating system. A Tcl interpreter is compiled into
these libraries, which provides the system with the
functionality of Tk and Tcl-DP. The parser reads a
statement of Rush code at a time and emits sets of
Scheme code, usually one or two Scheme statements
per Rush statement. We have used this interface
both to write the Rush�Scheme compiler, as well
as for the interpreter. Multiple-statement optimiza-
tions are expected to be performed by the Scheme or
C compilers.

3.1 Development Environment

The build process of a Rush-based application is be-
gun by writing code in Rush, Scheme, and/or C,
and providing a subset of this code to be compiled
into an interpreter. Our parser translates Rush code
into Scheme, which is compiled together with the
runtime libraries and any Scheme code provided by
the user. The Scheme compiler chosen was Bartlett’s
Scheme�C system [?] and so the output of this com-
pilation is a stream of C code. This C code is then
compiled into either an interpreter or standalone pro-
gram. This process is nearly identical to Tcl, in that
C-based additions are presented to a compiler for in-
clusion into a new version of the interpreter. Like
Tcl, if no code is to be compiled, then a precompiled
interpreter may be used (ie. the Rush equivalent of
“wish”). The advantage of the Rush build process
over Tcl’s is only that ours is designed to be portable
and seemless.

In the future, it may be possible to adopt a com-
pilation model where the user works directly from a
command line and each statement is compiled before
execution. Then, only the few C procedures needed
by the system would be compiled into the “compil-
ing interpreter”- the remaining code could be either
interpreted or compiled on the fly. It would also be
possible to place traps on procedures and compile
them if they have been executed many times or if
they contain loops or other expensive operations.

The first version of Rush was implemented be-
tween January and May of 1994, a surprisingly short
period of time for a full-fledged language. Although
much of the design work was done in the year pre-
ceding this, this period also included a flurry of de-
sign decisions as well. In the end, Rush consists of
about 12,000 lines of code in three major modules.
The parser is 4,000 lines of C code and yacc script;
the runtime library of core commands, types, type
converters, and rule code is another 4,000 lines of
compiled Scheme; the glue code that includes the
main loop, the Tk and DP bindings, and so on is an-
other 3,500 lines of compiled Scheme and 500 of C.
The runtime shared libraries compile to 2.5MB, libtcl
and libtk (build fm the standard distributions) com-
pile to another 1.2MB. The non-sharable executable
for the Rush interpreter compiles to 24K. The inter-
preter uses 1.4MB of RAM on startup; Tcl requires
350K by comparison.

3.2 External Callouts

We recognize the need to interoperate with other lan-
guages. Interfacing to the operating system and to

8

extremely efficient code are just two examples. As
well, reusing previously existing libraries of code re-
quires this capability. To support such needs, the
Rush runtime has been engineered to support calls
to foreign functions otherwise known as callouts.

At the current time, we provide these callout func-
tions with little support for examining the state of the
Rush runtime. While we believe that callout func-
tions should be low level primitives and not often
need such capabilities, we will be exploring adding
such callin features to the Rush runtime. Our hope
is to add callins without compromising performance
and possible compiler optimizations of Rush code.

Callout support is based on the capability of
Scheme�C to externally call predeclared C func-
tions. With predeclared signatures, Scheme�C can
make mostcallouts directly to the C function without
having to go through an argc/argv style interface.
Scheme�C has the capability to export some of its
datatypes, numbers, strings, and opaque pointers,
to C directly. Opaque pointers are essentially han-
dles to machine pointers. These opaque pointers
can be used to represent such things as C function
pointers. While they can not be mutated from the
Rush runtime, they can be stored in Rush variables,
lists, associative arrays, etc. and later passed to other
callouts. The export capability saves string conver-
sions when calling out to external functions. Simi-
larly, certain foreign return values are automatically
converted into Scheme datatypes. Integers, floats,
strings and C arrays are such datatypes. While it is
possible to retarget our system to work with other
Scheme systems, our “native” C callout mechanism
has not been made to be portable, owing to the lack of
standardization among Scheme implementations of
the C-based interface for examining Scheme objects.
We also offer an argc/argv interface like Tcl, and port-
ing this interface to other Scheme implementations
should not be difficult.

External code can call into the Rush runtime
through one function which receives a string form
and evaluates the form in the toplevel runtime state.
The result is returned as a string. An appropriate
analogy is using only the send command to exe-
cute Tcl code, so as not to interact with compiled
procedures. In the future, we plan to support in-
terpretation from within a given procedure frame;
unlike Tcl, our implementation would not penalize
the performance of any other procedure except the
one(s) where interpretation is possible. While we
have a design for this mechanism, it has not been
implemented, so we defer its discussion for a future
paper.

Using these callout and callin capabilities we have

constructed support for interacting with Tk and Tcl-
DP. In our current version of distributed Rush, we
embed a Tcl-DP and Tk capable interpreter into the
Rush runtime. Using our callout capabilities we ex-
port as Rush primitives, commands to manipulate
the interpreter. This has allowed us to prototype and
demonstrate distributed Rush programming. Using
Tcl-DP as a low level transport mechanism, we can
send and receive Rush programs across a network
of hosts. Similarly, callin and callout let us perform
graphical user interface manipulations with Tk.

4 Performance

Here we validate our performance claims. In the
benchmarks below, there are three Rush numbers
for each case. “Interpreted Rush” is code that was
entered and run from a command-line interpreter.
“Compiled Rush” is code that was compiled into
native machine code, linked with the command-line
interpreter, and run from there. “Optimized Rush?”
is a purely speculative number measured by running
compiled code that was hand-optimized in Scheme.
We include it as a sort of theoretical limit of the speeds
we could hope to achieve given a smart Rush-to-
Scheme compiler (with the same Scheme back-end).

There are five interesting cases we chose to study.
The first two are examples where traditional script-
ing languages perform poorly, relative to C. The lat-
ter three are microbenchmarks of the new features
we implemented.

4.1 Fibonacci Test

The first test is a recursive implementation of a Fi-
bonacci number function, a common performance
metric among the denizens of comp.lang.tcl. In
theory, this should stress the function call mechanism
of the language. In practice, scripting languages
which implement all operations as function calls, as
Tcl does, will also expend a large portion of effort
calling primitive operations. Compiled Rush and C
programs avoid this expense by minimizing func-
tion call overhead and by inlining small, frequently-
called procedures. This test demonstrates that we
can compile mathematics and control flow opera-
tions into efficient machine code, and that once we
do, the cost of Rush procedure calls is not exorbitant.

9

Performance: recursive fib(20)
Tcl 7,300 msec
perl4 5,800 msec
TC 1,400 msec 5x Tcl
interpreted Rush 800 msec 9x Tcl
compiled Rush 26 msec 280x Tcl
optimized Rush? 5 msec 1500x Tcl
optimized C 3.4 msec 2100x Tcl

Here are the Tcl and Rush versions of fib used in
the above tests:

Tcl version
proc fib {n} {

if {$n<2} then {
return $n

} else {
return [expr
[fib [expr $n-1]]+
[fib [expr $n-2]]]

}
}

Rush version
proc fib (int n) {

if {n < 2} then {return n}
return [fib n-1]+[fib n-2]

}

4.2 Integer Summation Test

Our second test is the summation of the first thou-
sand integers “the hard way”, using a for loop to
increment a summation variable. This is even worse
than fib for scripting languages that use function
calls to execute primitives, because compilers for
more efficient languages like C will convert the en-
tire operation into a tight inner loop of a few machine
language instructions. For Rush, this shows that we
can reasonably compile such tight inner loops. While
these numbers are not spectacular, we consider them
adequate for the time being; they can be improved
arbitrarily by better Scheme compilers.

Performance: integer summation
Tcl 240,000 �sec
interpreted Rush 25,000 �sec 10x Tcl
TC 24,000 �sec 10x Tcl
compiled Rush 1,100 �sec 220x Tcl
optimized Rush? 480 �sec 500x Tcl
optimized C 19 �sec 12600x Tcl

4.3 upvar vs. pass-by-reference

To help validate our claims about pass-by-reference,
we must show that using real pass-by-reference is no

slower than if we used Tcl’s upvar command to ref-
erence a variable by name from a called procedure.
Two numbers are shown: the first is the steady-state
time measurement of one procedure passing a refer-
ence to another. For Tcl, this would necessitate call-
ing upvar in each procedure, although it would be
possible to optimize away this call for all procedures
but those that actually need to use the reference, in
which case the former number drops to about 15�sec
to account for the overhead of passing one additional
parameter to the called procedure; this extra param-
eter would be the level at which to find the original
variable.

For Rush, the overhead is in creating the reference,
which is actually implemented as two closures, a
“getter” and a “setter”, which also eases rule imple-
mentation. Once created, these getters and setters
can be passed as normal parameters with no addi-
tional overhead. The runtime libraries check a tag
bit to see if objects are “boxed” in this way.

When accessing reference variables, Tcl has to tra-
verse a simple pointer; the remaining overhead is the
cost of string substitution in Tcl. For Rush, this cost
becomes the cost of a function call through a closure
(the getter in these tests).

do upvar/make reference
Tcl 43, 43 �sec
interpreted Rush 0, 21 �sec 2.0x Tcl
compiled Rush 0, 12 �sec 3.6x Tcl

use upvar/reference variable
Tcl 9.0 �sec
interpreted Rush 7.9 �sec 1.1x Tcl
compiled Rush .8 �sec 11.3x Tcl

4.4 uplevel vs. closures

The uplevel test mirrors the upvar test, only in this
case, we need to pass a set of code to a procedure
and then invoke this code. In Rush, we pass closures
instead of source code.

The results are fairly straightforward, except for
the first case where we pass code in Tcl. In this case,
the cost is roughly linear in the size of the source text
being passed, because Tcl has to pass code as strings.
The high overhead of creating closures in interpreted
Rush is an artifact of Scheme�C . As an experiment,
we are porting the runtime library to SCM, a small,
popular, and portable Scheme interpreter. Under
SCM, closure creation time dropped to around 3�sec,
although other numbers suffered and hence we did
not include SCM in our test results. We believe that
the individual weaknesses of these two Scheme inter-
preters is a result of the portability-for-performance

10

tradeoff that each made in using native C facilities
for their implementations. In less portable systems
like Screme [?], we would expect better performance.

pass code/create closure
Tcl 45 + .29�sec/char
interpreted Rush 84.0 �sec
compiled Rush 3.1 �sec 15+ x Tcl

uplevel call/execute closure
Tcl 74.0 �sec
interpreted Rush 5.0 �sec 13x Tcl
compiled Rush .35 �sec 211x Tcl

4.5 Rules

Our test for rules shows a marked improvement of
Rush over Tcl, where Tcl rules are hand-written using
write traces. Our Tcl implementation of rules for
this test is severely limited; it only applies to simple
predicates of one variable, and that variable must be
global. Also, Tcl provides no way for write traces
to see the “old value” of a variable, so our cases did
not include that sort of expression. Furthermore,
since Rush executes the predicates and actions much
more quickly than Tcl, it would not be fair to include
anything more than one simple predicate and one
simple action.

This is the best we could do without producing
ridiculous test code. Though the features of these
two implementations vary widely, we think there is
some small basis for comparison.

simple rule: action executes
Tcl 322.0 �sec
interpreted Rush 101.0 �sec 3.2x Tcl
compiled Rush 8.6 �sec 37.4x Tcl

simple rule: action doesn’t execute
Tcl 271.0 �sec
interpreted Rush 69.0 �sec 3.9x Tcl
compiled Rush 5.1 �sec 53.1x Tcl

The following is the source code to the rule test:

Tcl version
trace variable a w n
proc n {a b c} {
upvar #0 $a d
if {$d<7} {global e; set e 1}

}
action executes.
time {set a 3} ...

action does not execute.

time {set a 9} ...

#------------------------------
Rush version
on {a<7} do {b=1}

action executes.
time {a=3} ...

action does not execute.
time {a=9} ...

5 Future Work

In the introduction, we said that we have been care-
ful to make Rush optimizable. That is so, but our
current compiler does not take advantage of most
of these opportunities! A more heroic Scheme opti-
mizer, perhaps one that massages code in continua-
tion passing style [?] [?], might bring us close to our
theoretical limit.

A sophisticated debugging environment would be
nice for scripting languages such as Rush and Tcl,
which tend to catch fewer errors at compile-time
than more rigid languages like Pascal and C. We are
at work on an interactive system that makes helpful
comments about your rush code as you type it. Also,
we are developing methods for viewing and debug-
ging rules, since rules have the potential to interact
with each other in mysterious ways.

One long-term goal for Rush is to provide a run-
time compilation system that generates very efficient
code [?]; such a system would perform many of the
operations of traditional optimizing compilers, but
for statements entered on the command line. This
would allow on-the-fly composition of code from un-
predictable sources (for example, code represented
as text delivered by network messages) into a rep-
resentation that runs almost as quickly as statically-
compiled code, and which runs much more quickly
than the interpreted fare offered by traditional “eval”
features. Such a runtime compiler would also speed
up the rule system.

A short-term goal is to retrofit TC (the Tcl compiler)
so that it can act as a Tcl-to-Rush translator. This
translator would not be a universal program that
works on all Tcl code; the Tcl idioms which Rush has
abandoned for performance reasons would not be
supported. Our hope is that migration to Rush will
be easy.

All in all, Rush seems to provide many new op-
portunities for interesting research, and we likewise
hope that it will be useful in developing real appli-

11

cations. Since Rush was developed for the Mariposa
distributed database project we will soon have the
experience to guide future design decisions.

We would like to thank Michael Stonebraker, Raph
Levien, John Ousterhout, and the Mariposa research
group for their insightful comments and feedback.

References

[ASU86] Alfred Aho, Ravi Sethi, and Jeffrey Ull-
man. “Compilers: Principles, Techniques
and Tools.” pp.422-423 introduce the issues
in implementing dynamic scope, although
their text predates the acceptance of RISC
architectures and the new importance on
storing local variables in registers, as op-
posed to their maintenance in memory lo-
cations.

[ARZ] Fran Allen, Barry Rosen, and Kenneth
Zadeck. Optimization in Compilers. This is a
highly-detailed point-by-point description
of modern optimization techniques. ACM
press, forthcoming.

[WF90] Jennifer Widom and Sheldon Finkelstein.
Set-Oriented Production Rules in Rela-
tional Database Systems. Proc. ACM SIG-
MOD. Atlantic City, NJ, May 1990.

[Oust94] John Ousterhout. An Introdution to Tcl and
Tk. Addison-Wesley, New York, NY, 1994.

[Bart89] Joel Bartlett. “Scheme�C : a portable
Scheme-to-C compiler”, DEC WRL Tech-
nical Report #89/1, Jan, 1989.

[Brav93] Michael Braverman. “Caste: a class system
for Tcl”, Proc. Tcl’93 Workshop. June, 1993.

[SB93] Adam Sah and Jon Blow. “TC: A Compiler
for the Tcl Language”, Proc. Tcl’93 Work-
shop. June, 1993.

[Sah94] Adam Sah. “An Efficient Implementation
of the Tcl Language”. Master’s Thesis, Univ.
of Cal. at Berkeley tech report #UCB-CSD-
94-812. May, 1994.

[Surv94] Adam Sah, ed. USENET survey of Tcl usage
on comp.lang.tcl. Unpublished. April, 1994.

[Shiv88] Olin Shivers. “Control Flow Analysis in
Scheme”. ACM Prg Lang Des. and Impl.
June, 1988.

[App92] Andrew Appel. Compiling with Continua-
tions. Cambridge University Press, 1992.

[VP89] Steven Vegdahl, Uwe Pleban. “The Run-
time Environment for Screme, a Scheme
Implementation on the 88000.” 3rd Int’l
Conf. ASPLOS. SIGPLAN Notices 24, April
1989.

[SHH86] Michael Stonebraker, Eric Hanson, and
Chin-Heng Hong. "The Design of the Post-
gres Rules System." UC Berkeley tech re-
port #UCB/ERL M86/80.

[Sto93] Michael Stonebraker. The Integration of
Rule Systems and Databases. UC Berkeley
tech report #UCB/ERL M93/25. 1993.

[Ros93] Guido van Rossum. "An Introduction to
Python for UNIX/C Programmers". Pro-
ceedings of the NLUUG najaarsconferentie
1993.

[WS91] Larry Wall and Randal L. Schwartz. Pro-
gramming Perl. O’Reilly and Associates,
1991.

[YS93] Curtis Yarvin and Adam Sah. "Binary Opti-
mization for Portable Runtime Code Gener-
ation in C." UC Berkeley Tech Report #UCB-
CSD-93/792. December 1993.

12

